Jacques Bair, Piotr Błaszczyk, Robert Ely, Valérie Henry, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze, Thomas McGaffey, Patrick Reeder, David M. Schaps, David Sherry & Steven Shnider
Authors |
|
Abstract |
We apply Benacerraf’s distinction between mathematical ontology and mathematical practice to examine contrasting interpretations of infinitesimal mathematics of the seventeenth and eighteenth century, in the work of Bos, Ferraro, Laugwitz, and others. We detect Weierstrass’s ghost behind some of the received historiography on Euler’s infinitesimal mathematics, as when Ferraro proposes to understand Euler in terms of a Weierstrassian notion of limit and Fraser declares classical analysis to be a “primary point of reference for understanding the eighteenth-century theories.” Meanwhile, scholars like Bos and Laugwitz seek to explore Eulerian methodology, practice, and procedures in a way more faithful to Euler’s own. Euler’s use of infinite integers and the associated infinite products are analyzed in the context of his infinite product decomposition for the sine function. Euler’s principle of cancellation is compared to the Leibnizian transcendental law of homogeneity. The Leibnizian law of continuity similarly finds echoes in Euler. We argue that Ferraro’s assumption that Euler worked with a classical notion of quantity is symptomatic of a post-Weierstrassian placement of Euler in the Archimedean track for the development of analysis, as well as a blurring of the distinction between the dual tracks noted by Bos. Interpreting Euler in an Archimedean conceptual framework obscures important aspects of Euler’s work. Such a framework is profitably replaced by a syntactically more versatile modern infinitesimal framework that provides better proxies for his inferential moves.
|
Keywords | No keywords specified (fix it) |
Categories | (categorize this paper) |
ISBN(s) | |
DOI | 10.1007/s10838-016-9334-z |
Options |
![]() ![]() ![]() ![]() |
Download options
References found in this work BETA
The Structure of Scientific Revolutions.Thomas Samuel Kuhn - 1962 - Chicago: University of Chicago Press.
View all 52 references / Add more references
Citations of this work BETA
Infinite Lotteries, Spinners, Applicability of Hyperreals†.Emanuele Bottazzi & Mikhail G. Katz - forthcoming - Philosophia Mathematica.
Infinitesimal Analysis Without the Axiom of Choice.Karel Hrbacek & Mikhail G. Katz - 2021 - Annals of Pure and Applied Logic 172 (6):102959.
Gregory’s Sixth Operation.Tiziana Bascelli, Piotr Błaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze, Tahl Nowik, David M. Schaps & David Sherry - 2018 - Foundations of Science 23 (1):133-144.
Controversies in the Foundations of Analysis: Comments on Schubring’s Conflicts.Piotr Błaszczyk, Vladimir Kanovei, Mikhail G. Katz & David Sherry - 2017 - Foundations of Science 22 (1):125-140.
Toward a History of Mathematics Focused on Procedures.Piotr Błaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze & David Sherry - 2017 - Foundations of Science 22 (4):763-783.
View all 10 citations / Add more citations
Similar books and articles
Is Leibnizian Calculus Embeddable in First Order Logic?Piotr Błaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Taras Kudryk, Thomas Mormann & David Sherry - 2017 - Foundations of Science 22 (4):73 - 88.
Learning From Euler. From Mathematical Practice to Mathematical Explanation.Daniele Molinini - 2012 - Philosophia Scientiae 16 (1):105-127.
Euler’s Visual Logic.Eric M. Hammer & Sun-Joo Shin - 1998 - History and Philosophy of Logic 19 (1):1-29.
Leonhard Euler's ‘Anti-Newtonian’ Theory of Light.R. W. Home - 1988 - Annals of Science 45 (5):521-533.
Counter-Example Construction with Euler Diagrams.Ryo Takemura - 2015 - Studia Logica 103 (4):669-696.
Euler, Newton, and Foundations for Mechanics.Marius Stan - 2017 - In Chris Smeenk & Eric Schliesser (eds.), The Oxford Handbook of Newton. Oxford University Press. pp. 1-22.
Euler'sϕ-Function in the Context of IΔ 0.Marc Jumelet - 1995 - Archive for Mathematical Logic 34 (3):197-209.
Leonhard Euler: Letters to a German Princess (1760-1762). Euler - 2009 - In Eric Watkins (ed.), Kant's Critique of Pure Reason: Background Source Materials. Cambridge University Press.
Der „schockierende“ anfang der mathematischen medienwissenschaft: Zum streit zwischen euler und d’alembert über die schwingende saite.Bernhard Siegert - 2010 - In Wladimir Velminski & Horst Bredekamp (eds.), Mathesis & Graphe: Leonhard Euler Und Die Entfaltung der Wissensysteme. Akademie Verlag. pp. 191-208.
How Diagrams Can Support Syllogistic Reasoning: An Experimental Study.Yuri Sato & Koji Mineshima - 2015 - Journal of Logic, Language and Information 24 (4):409-455.
„Den monaden Das garaus machen“: Leonhard euler und die ,monadisten.Hanns-Peter Neumann - 2010 - In Wladimir Velminski & Horst Bredekamp (eds.), Mathesis & Graphe: Leonhard Euler Und Die Entfaltung der Wissensysteme. Akademie Verlag. pp. 121-156.
Leonhard euler AlS projektion: Eine einleitung.Wladimir Velminski & Horst Bredekamp - 2010 - In Wladimir Velminski & Horst Bredekamp (eds.), Mathesis & Graphe: Leonhard Euler Und Die Entfaltung der Wissensysteme. Akademie Verlag. pp. 7-18.
Analytics
Added to PP index
2016-07-20
Total views
53 ( #213,959 of 2,506,031 )
Recent downloads (6 months)
1 ( #416,828 of 2,506,031 )
2016-07-20
Total views
53 ( #213,959 of 2,506,031 )
Recent downloads (6 months)
1 ( #416,828 of 2,506,031 )
How can I increase my downloads?
Downloads