Linear Kripke Frames and Gödel Logics
Journal of Symbolic Logic 72 (1):26 - 44 (2007)
Abstract
We investigate the relation between intermediate predicate logics based on countable linear Kripke frames with constant domains and Gödel logics. We show that for any such Kripke frame there is a Gödel logic which coincides with the logic defined by this Kripke frame on constant domains and vice versa. This allows us to transfer several recent results on Gödel logics to logics based on countable linear Kripke frames with constant domains: We obtain a complete characterisation of axiomatisability of logics based on countable linear Kripke frames with constant domains. Furthermore, we obtain that the total number of logics defined by countable linear Kripke frames on constant domains is countableDOI
10.2178/jsl/1174668382
My notes
Similar books and articles
On finite linear intermediate predicate logics.Hiroakira Ono - 1988 - Studia Logica 47 (4):391 - 399.
Products of 'transitive' modal logics.David Gabelaia, Agi Kurucz, Frank Wolter & Michael Zakharyaschev - 2005 - Journal of Symbolic Logic 70 (3):993-1021.
Some results on the Kripke sheaf semantics for super-intuitionistic predicate logics.Nobu-Yuki Suzuki - 1993 - Studia Logica 52 (1):73 - 94.
On intermediate predicate logics of some finite Kripke frames, I. levelwise uniform trees.Dmitrij Skvortsov - 2004 - Studia Logica 77 (3):295 - 323.
Kripke semantics for modal substructural logics.Norihiro Kamide - 2002 - Journal of Logic, Language and Information 11 (4):453-470.
First-order Gödel logics.Richard Zach, Matthias Baaz & Norbert Preining - 2007 - Annals of Pure and Applied Logic 147 (1):23-47.
An elementary construction for a non-elementary procedure.Maarten Marx & Szabolcs Mikulás - 2002 - Studia Logica 72 (2):253-263.
An analysis of gödel's dialectica interpretation via linear logic.Paulo Oliva - 2008 - Dialectica 62 (2):269–290.
Matching Topological and Frame Products of Modal Logics.Philip Kremer - 2016 - Studia Logica 104 (3):487-502.
The Power of a Propositional Constant.Robert Goldblatt & Tomasz Kowalski - 2012 - Journal of Philosophical Logic (1):1-20.
Analytics
Added to PP
2010-08-24
Downloads
14 (#733,752)
6 months
1 (#454,876)
2010-08-24
Downloads
14 (#733,752)
6 months
1 (#454,876)
Historical graph of downloads
Citations of this work
First-order Gödel logics.Richard Zach, Matthias Baaz & Norbert Preining - 2007 - Annals of Pure and Applied Logic 147 (1):23-47.
Gentzen Calculi for the Existence Predicate.Matthias Baaz & Rosalie Iemhoff - 2006 - Studia Logica 82 (1):7-23.
Note on witnessed Gödel logics with Delta.Matthias Baaz & Oliver Fasching - 2010 - Annals of Pure and Applied Logic 161 (2):121-127.