Abstract
A complete theory T has the Schröder–Bernstein property or simply the SB-property if any pair of elementarily bi-embeddable models are isomorphic. This property has been studied in the discrete first-order setting and can be seen as a first step towards classification theory. This paper deals with the SB-property on continuous theories. Examples of complete continuous theories that have this property include Hilbert spaces and any completion of the theory of probability algebras. We also study a weaker notion, the SB-property up to perturbations. This property holds if any two elementarily bi-embeddable models are isomorphic up to perturbations. We prove that the theory of Hilbert spaces expanded with a bounded self-adjoint operator has the SB-property up to perturbations of the operator and that the theory of atomless probability algebras with a generic automorphism have the SB-property up to perturbations of the automorphism. We also study how the SB-property behaves with respect to randomizations. Finally we prove, in the continuous setting, that if T is a strictly stable theory then T does not have the SB-property.