Massive redeployment, exaptation, and the functional integration of cognitive operations

Synthese 159 (3):329 - 345 (2007)
  Copy   BIBTEX

Abstract

Abstract: The massive redeployment hypothesis (MRH) is a theory about the functional topography of the human brain, offering a middle course between strict localization on the one hand, and holism on the other. Central to MRH is the claim that cognitive evolution proceeded in a way analogous to component reuse in software engineering, whereby existing components-originally developed to serve some specific purpose-were used for new purposes and combined to support new capacities, without disrupting their participation in existing programs. If the evolution of cognition was indeed driven by such exaptation, then we should be able to make some specific empirical predictions regarding the resulting functional topography of the brain. This essay discusses three such predictions, and some of the evidence supporting them. Then, using this account as a background, the essay considers the implications of these findings for an account of the functional integration of cognitive operations. For instance, MRH suggests that in order to determine the functional role of a given brain area it is necessary to consider its participation across multiple task categories, and not just focus on one, as has been the typical practice in cognitive neuroscience. This change of methodology will motivate (even perhaps necessitate) the development of a new, domain-neutral vocabulary for characterizing the contribution of individual brain areas to larger functional complexes, and direct particular attention to the question of how these various area roles are integrated and coordinated to result in the observed cognitive effect. Finally, the details of the mix of cognitive functions a given area supports should tell us something interesting not just about the likely computational role of that area, but about the nature of and relations between the cognitive functions themselves. For instance, growing evidence of the role of “motor” areas like M1, SMA and PMC in language processing, and of “language” areas like Broca’s area in motor control, offers the possibility for significantly reconceptualizing the nature both of language and of motor control

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,349

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2009-01-28

Downloads
227 (#85,518)

6 months
15 (#159,278)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Michael Anderson
University of Arizona