Bounding non- GL ₂ and R.E.A

Journal of Symbolic Logic 74 (3):989-1000 (2009)
  Copy   BIBTEX

Abstract

We prove that every Turing degree a bounding some non-GL₂ degree is recursively enumerable in and above (r.e.a.) some 1-generic degree

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,941

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Highness and bounding minimal pairs.Rodney G. Downey, Steffen Lempp & Richard A. Shore - 1993 - Mathematical Logic Quarterly 39 (1):475-491.
Complementation in the Turing degrees.Theodore A. Slaman & John R. Steel - 1989 - Journal of Symbolic Logic 54 (1):160-176.
Strong Minimal Covers for Recursively Enumerable Degrees.S. Barry Cooper - 1996 - Mathematical Logic Quarterly 42 (1):191-196.
Recursively enumerable generic sets.Wolfgang Maass - 1982 - Journal of Symbolic Logic 47 (4):809-823.
Splittings of 0' into the Recursively Enumerable Degrees.Xiaoding Yi - 1996 - Mathematical Logic Quarterly 42 (1):249-269.
Strong Minimal Covers for Recursively Enumerable Degrees.S. Cooper - 1996 - Mathematical Logic Quarterly 42 (1):191-196.
Highness, locally noncappability and nonboundings.Frank Stephan & Guohua Wu - 2013 - Annals of Pure and Applied Logic 164 (5):511-522.

Analytics

Added to PP
2010-09-12

Downloads
74 (#279,505)

6 months
19 (#147,970)

Historical graph of downloads
How can I increase my downloads?

Author Profiles

Citations of this work

A 2-minimal non-gl2 degree.Mingzhong Cai - 2010 - Journal of Mathematical Logic 10 (1):1-30.
Relatively computably enumerable reals.Bernard A. Anderson - 2011 - Archive for Mathematical Logic 50 (3-4):361-365.

Add more citations

References found in this work

Lowness for genericity.Liang Yu - 2006 - Archive for Mathematical Logic 45 (2):233-238.
Turing degrees of certain isomorphic images of computable relations.Valentina S. Harizanov - 1998 - Annals of Pure and Applied Logic 93 (1-3):103-113.

Add more references