SiFSO: Fish Swarm Optimization-Based Technique for Efficient Community Detection in Complex Networks

Complexity 2020:1-9 (2020)
  Copy   BIBTEX

Abstract

Efficient community detection in a complex network is considered an interesting issue due to its vast applications in many prevailing areas such as biology, chemistry, linguistics, social sciences, and others. There are several algorithms available for network community detection. This study proposed the Sigmoid Fish Swarm Optimization algorithm to discover efficient network communities. Our proposed algorithm uses the sigmoid function for various fish moves in a swarm, including Prey, Follow, Swarm, and Free Move, for better movement and community detection. The proposed SiFSO algorithm’s performance is tested against state-of-the-art particle swarm optimization algorithms in Q-modularity and normalized mutual information. The results showed that the proposed SiFSO algorithm is 0.0014% better in terms of Q-modularity and 0.1187% better in terms of NMI than the other selected algorithms.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 99,169

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Overlapping Community Detection in Dynamic Networks.Nathan Aston - 2014 - Journal of Software Engineering and Applications 7:872-882.
Multipath Routing Optimization for Enhanced Load Balancing in Data-Heavy Networks.M. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):377-382.

Analytics

Added to PP
2020-12-22

Downloads
28 (#669,029)

6 months
4 (#1,188,840)

Historical graph of downloads
How can I increase my downloads?