Coalgebras, Chu Spaces, and Representations of Physical Systems

Journal of Philosophical Logic 42 (3):551-574 (2013)
  Copy   BIBTEX

Abstract

We investigate the use of coalgebra to represent quantum systems, thus providing a basis for the use of coalgebraic methods in quantum information and computation. Coalgebras allow the dynamics of repeated measurement to be captured, and provide mathematical tools such as final coalgebras, bisimulation and coalgebraic logic. However, the standard coalgebraic framework does not accommodate contravariance, and is too rigid to allow physical symmetries to be represented. We introduce a fibrational structure on coalgebras in which contravariance is represented by indexing. We use this structure to give a universal semantics for quantum systems based on a final coalgebra construction. We characterize equality in this semantics as projective equivalence. We also define an analogous indexed structure for Chu spaces, and use this to obtain a novel categorical description of the category of Chu spaces. We use the indexed structures of Chu spaces and coalgebras over a common base to define a truncation functor from coalgebras to Chu spaces. This truncation functor is used to lift the full and faithful representation of the groupoid of physical symmetries on Hilbert spaces into Chu spaces, obtained in our previous work, to the coalgebraic semantics

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,139

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2013-04-05

Downloads
44 (#336,932)

6 months
8 (#241,888)

Historical graph of downloads
How can I increase my downloads?