Notes on the partition property of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}_\kappa\lambda}$$\end{document} [Book Review]

Archive for Mathematical Logic 51 (5-6):575-589 (2012)
  Copy   BIBTEX

Abstract

We investigate the partition property of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}_{\kappa}\lambda}$$\end{document}. Main results of this paper are as follows: (1) If λ is the least cardinal greater than κ such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}_{\kappa}\lambda}$$\end{document} carries a (λκ, 2)-distributive normal ideal without the partition property, then λ is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^1_n}$$\end{document}-indescribable for all n < ω but not \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^2_1}$$\end{document} -indescribable. (2) If cf(λ) ≥ κ, then every ineffable subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}_{\kappa}\lambda}$$\end{document} has the partition property. (3) If cf(λ) ≥ κ, then the completely ineffable ideal over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}_{\kappa}\lambda}$$\end{document} has the partition property.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 92,261

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Weak square bracket relations for P κ (λ).Pierre Matet - 2008 - Journal of Symbolic Logic 73 (3):729-751.
A Gitik iteration with nearly Easton factoring.William J. Mitchell - 2003 - Journal of Symbolic Logic 68 (2):481-502.
Splitting stationary sets in.Toshimichi Usuba - 2012 - Journal of Symbolic Logic 77 (1):49-62.
On some small cardinals for Boolean algebras.Ralph Mckenzie & J. Donald Monk - 2004 - Journal of Symbolic Logic 69 (3):674-682.
Polarized partition relations.James E. Baumgartner & Andras Hajnal - 2001 - Journal of Symbolic Logic 66 (2):811-821.
Classical Modal De Morgan Algebras.Sergio A. Celani - 2011 - Studia Logica 98 (1-2):251-266.
Depth of Boolean Algebras.Shimon Garti & Saharon Shelah - 2011 - Notre Dame Journal of Formal Logic 52 (3):307-314.
Fat sets and saturated ideals.John Krueger - 2003 - Journal of Symbolic Logic 68 (3):837-845.
A baire-type theorem for cardinals.Kurt Wolfsdorf - 1983 - Journal of Symbolic Logic 48 (4):1082-1089.

Analytics

Added to PP
2013-10-27

Downloads
55 (#292,062)

6 months
3 (#984,770)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Subtlety and partition relations.Toshimichi Usuba - 2016 - Mathematical Logic Quarterly 62 (1-2):59-71.
Two-cardinal ideal operators and indescribability.Brent Cody & Philip White - 2024 - Annals of Pure and Applied Logic 175 (8):103463.

Add more citations