A hierarchy of filters smaller than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $CF_\kappa\lambda-->$\end{document} [Book Review]

Archive for Mathematical Logic 36 (6):385-397 (1997)
  Copy   BIBTEX


This research was partially supported by Grant-in-Aid for Scientific Research (No. 06640178 and No. 06640336), Ministry of Education, Science and Culture of Japan Mathematics Subject Classification: 03E05 --> Abstract. Following Carr's study on diagonal operations and normal filters on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal P}_{\kappa}\lambda$\end{document} in [2], several weakenings of normality have been investigated. One of them is to consider normal filters without \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\kappa$\end{document}-completeness, for example, see DiPrisco-Uzcategui [3]. The other is weakening normality itself while keeping \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\kappa$\end{document}-completeness such as in Mignone [10] and Shioya [11]. We take the second one so that all filters are assumed to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\kappa$\end{document}-complete. In Sect. 1 a hierarchy of filters on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal P}_{\kappa}\lambda$\end{document} is presented which corresponds to the length of diagonal intersections under which the filters are closed. It turns out that many ranks exist between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $FSF_{\kappa\lambda}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $CF_{\kappa\lambda}$\end{document}. We consider seminormal ideals in Sect. 2 and determine the minimal seminormal ideal extending Johnson's result in [6]. Its precise descripti on changes according to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $cf(\lambda )$\end{document} although we can write it in a single form as well. We also prove that a nonnormal seminormal ideal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $I\supset NS_{\kappa\lambda}$\end{document} exists if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\lambda$\end{document} is regular.



    Upload a copy of this work     Papers currently archived: 92,227

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Weak square bracket relations for P κ (λ).Pierre Matet - 2008 - Journal of Symbolic Logic 73 (3):729-751.
A Gitik iteration with nearly Easton factoring.William J. Mitchell - 2003 - Journal of Symbolic Logic 68 (2):481-502.
On some small cardinals for Boolean algebras.Ralph Mckenzie & J. Donald Monk - 2004 - Journal of Symbolic Logic 69 (3):674-682.
Depth of Boolean Algebras.Shimon Garti & Saharon Shelah - 2011 - Notre Dame Journal of Formal Logic 52 (3):307-314.
Fat sets and saturated ideals.John Krueger - 2003 - Journal of Symbolic Logic 68 (3):837-845.
Infinitary combinatorics and modal logic.Andreas Blass - 1990 - Journal of Symbolic Logic 55 (2):761-778.
More on Regular Reduced Products.Juliette Cara Kennedy & Saharon Shelah - 2004 - Journal of Symbolic Logic 69 (4):1261 - 1266.
Normality and p(κ)/j.R. Zrotowski - 1991 - Journal of Symbolic Logic 56 (3):1064-1067.
A weak variation of Shelah's I[ω₂].William J. Mitchell - 2004 - Journal of Symbolic Logic 69 (1):94-100.


Added to PP

32 (#502,492)

6 months
4 (#798,951)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Partition relations for κ-normal ideals on Pκ(λ).Pierre Matet - 2003 - Annals of Pure and Applied Logic 121 (1):89-111.
Partition relations for κ-normal ideals on Pκ(λ).Pierre Matet - 2003 - Annals of Pure and Applied Logic 121 (1):89-111.
A partition property of a mixed type for P~k(Lambda).Pierre Matet - 2003 - Mathematical Logic Quarterly 49 (6):615.
The nonstationary ideal on P_kappa for lambda singular.Pierre Matet & Saharon Shelah - 2017 - Archive for Mathematical Logic 56 (7-8):911-934.

Add more citations

References found in this work

Add more references