Switch to: References

Citations of:

Quantum logic and probability theory

Stanford Encyclopedia of Philosophy (2008)

Add citations

You must login to add citations.
  1. On the Common Logical Structure of Classical and Quantum Mechanics.Andrea Oldofredi, Gabriele Carcassi & Christine A. Aidala - 2024 - Erkenntnis 89 (4):1507-1533.
    At the onset of quantum mechanics, it was argued that the new theory would entail a rejection of classical logic. The main arguments to support this claim come from the non-commutativity of quantum observables, which allegedly would generate a non-distributive lattice of propositions, and from quantum superpositions, which would entail new rules for quantum disjunctions. While the quantum logic program is not as popular as it once was, a crucial question remains unsettled: what is the relationship between the logical structures (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Bell’s Theorem, Quantum Probabilities, and Superdeterminism.Eddy Keming Chen - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    In this short survey article, I discuss Bell’s theorem and some strategies that attempt to avoid the conclusion of non-locality. I focus on two that intersect with the philosophy of probability: (1) quantum probabilities and (2) superdeterminism. The issues they raised not only apply to a wide class of no-go theorems about quantum mechanics but are also of general philosophical interest.
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Imprecise Probabilities in Quantum Mechanics.Stephan Hartmann - 2015 - In Colleen E. Crangle, Adolfo García de la Sienra & Helen E. Longino (eds.), Foundations and Methods From Mathematics to Neuroscience: Essays Inspired by Patrick Suppes. Stanford Univ Center for the Study. pp. 77-82.
    In his entry on "Quantum Logic and Probability Theory" in the Stanford Encyclopedia of Philosophy, Alexander Wilce (2012) writes that "it is uncontroversial (though remarkable) the formal apparatus quantum mechanics reduces neatly to a generalization of classical probability in which the role played by a Boolean algebra of events in the latter is taken over the 'quantum logic' of projection operators on a Hilbert space." For a long time, Patrick Suppes has opposed this view (see, for example, the paper collected (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Correspondence Between Kripke Frames and Projective Geometries.Shengyang Zhong - 2018 - Studia Logica 106 (1):167-189.
    In this paper we show that some orthogeometries, i.e. projective geometries each defined using a ternary collinearity relation and equipped with a binary orthogonality relation, which are extensively studied in mathematics and quantum theory, correspond to Kripke frames, each defined using a binary relation, satisfying a few conditions. To be precise, we will define four special kinds of Kripke frames, namely, geometric frames, irreducible geometric frames, complete geometric frames and quantum Kripke frames; and we will show that they correspond to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Tricky Truths: How Should Alethic Pluralism Accommodate Racial Truths?Ragnar van der Merwe & Phila Msimang - forthcoming - Acta Analytica:1-23.
    Some alethic pluralists maintain that there are two kinds of truths operant in our alethic discourse: a realist kind and an anti-realist kind. In this paper, we argue that such a binary conception cannot accommodate certain social truths, specifically truths about race. Most alethic pluralists surprisingly overlook the status of racial truths. Douglas Edwards is, however, an exception. In his version of alethic pluralism—Determination Pluralism—racial truths are superassertible (anti-realist) true rather than correspondence (realist) true. We argue that racial truths exhibit (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • Quantum Logic and Quantum Reconstruction.Allen Stairs - 2015 - Foundations of Physics 45 (10):1351-1361.
    Quantum logic understood as a reconstruction program had real successes and genuine limitations. This paper offers a synopsis of both and suggests a way of seeing quantum logic in a larger, still thriving context.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • A semiotic analysis of multiple systems of logic: using tagmemic theory to assess the usefulness and limitations of formal logics, and to produce a mathematical lattice model including multiple systems of logic.Vern Poythress - 2022 - Semiotica 2022 (244):145-162.
    Tagmemic theory as a semiotic theory can be used to analyze multiple systems of logic and to assess their strengths and weaknesses. This analysis constitutes an application of semiotics and also a contribution to understanding of the nature of logic within the context of human meaning. Each system of logic is best adapted to represent one portion of human rationality. Acknowledging this correlation between systems and their targets helps explain the usefulness of more than one system. Among these systems, the (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • The information-theoretic view of quantum mechanics and the measurement problem(s).Federico Laudisa - 2023 - European Journal for Philosophy of Science 13 (2):1-26.
    Until recently Jeffrey Bub and Itamar Pitowsky, in the framework of an information-theoretic view of quantum mechanics, claimed first that to the measurement problem in its ordinary formulation there correspond in effect two measurement problems (simply called the big and the small measurement problems), with a different degree of relevance and, second, that the analysis of a quantum measurement is a problem only if other assumptions – taken by Pitowsky and Bub to be unnecessary ‘dogmas’ – are assumed. Here I (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Two quantum logics of indeterminacy.Samuel C. Fletcher & David E. Taylor - 2021 - Synthese 199 (5-6):13247-13281.
    We implement a recent characterization of metaphysical indeterminacy in the context of orthodox quantum theory, developing the syntax and semantics of two propositional logics equipped with determinacy and indeterminacy operators. These logics, which extend a novel semantics for standard quantum logic that accounts for Hilbert spaces with superselection sectors, preserve different desirable features of quantum logic and logics of indeterminacy. In addition to comparing the relative advantages of the two, we also explain how each logic answers Williamson’s challenge to any (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Quantum indeterminacy and the eigenstate-eigenvalue link.Samuel C. Fletcher & David E. Taylor - 2021 - Synthese 199 (3-4):1-32.
    Can quantum theory provide examples of metaphysical indeterminacy, indeterminacy that obtains in the world itself, independently of how one represents the world in language or thought? We provide a positive answer assuming just one constraint of orthodox quantum theory: the eigenstate-eigenvalue link. Our account adds a modal condition to preclude spurious indeterminacy in the presence of superselection sectors. No other extant account of metaphysical indeterminacy in quantum theory meets these demands.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • ‘Shut up and contemplate!’: Lucien Hardy׳s reasonable axioms for quantum theory.Olivier Darrigol - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):328-342.
  • Extensionalism and Scientific Theory in Quine’s Philosophy.Saloua Chatti - 2011 - International Studies in the Philosophy of Science 25 (1):1-21.
    In this article, I analyze Quine’s conception of science, which is a radical defence of extensionalism on the grounds that first‐order logic is the most adequate logic for science. I examine some criticisms addressed to it, which show the role of modalities and probabilities in science and argue that Quine’s treatment of probability minimizes the intensional character of scientific language and methods by considering that probability is extensionalizable. But this extensionalizing leads to untenable results in some cases and is not (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantum cognition and bounded rationality.Reinhard Blutner & Peter Beim Graben - 2016 - Synthese 193 (10).
    We consider several puzzles of bounded rationality. These include the Allais- and Ellsberg paradox, the disjunction effect, and related puzzles. We argue that the present account of quantum cognition—taking quantum probabilities rather than classical probabilities—can give a more systematic description of these puzzles than the alternate treatments in the traditional frameworks of bounded rationality. Unfortunately, the quantum probabilistic treatment does not always provide a deeper understanding and a true explanation of these puzzles. One reason is that quantum approaches introduce additional (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • The dynamic turn in quantum logic.Alexandru Baltag & Sonja Smets - 2012 - Synthese 186 (3):753 - 773.
    In this paper we show how ideas coming from two areas of research in logic can reinforce each other. The first such line of inquiry concerns the "dynamic turn" in logic and especially the formalisms inspired by Propositional Dynamic Logic (PDL); while the second line concerns research into the logical foundations of Quantum Physics, and in particular the area known as Operational Quantum Logic, as developed by Jauch and Piron (Helve Phys Acta 42: 842-848, 1969), Pirón (Foundations of Quantum Physics, (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Naturalización de la Metafísica Modal.Carlos Romero - 2021 - Dissertation, National Autonomous University of Mexico
    ⦿ In my dissertation I introduce, motivate and take the first steps in the implementation of, the project of naturalising modal metaphysics: the transformation of the field into a chapter of the philosophy of science rather than speculative, autonomous metaphysics. -/- ⦿ In the introduction, I explain the concept of naturalisation that I apply throughout the dissertation, which I argue to be an improvement on Ladyman and Ross' proposal for naturalised metaphysics. I also object to Williamson's proposal that modal metaphysics (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  • Logic in reality.Joseph E. Brenner - 2008 - Dordrecht: Springer.
    The work is the presentation of a logical theory - Logic in Reality (LIR) - and of applications of that theory in natural science and philosophy, including ...
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  • Fragmental Presentism and Quantum Mechanics.Paul Merriam - 2021
    This paper develops a Fragmentalist theory of Presentism and shows how it can help to develop a interpretation of quantum mechanics. There are several fragmental interpretations of physics. In the interpretation of this paper, each quantum system forms a fragment, and fragment f1 makes a measurement on fragment f2 if and only if f2 makes a corresponding measurement on f1. The main idea is then that each fragment has its own present (or ‘now’) until a mutual quantum measurement—at which time (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Interpreting quantum nonlocality as platonic information.James C. Emerson - unknown
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Can quantum mechanics be shown to be incomplete in principle?Carsten Held - unknown
    The paper presents an argument for the incompleteness in principle of quantum mechanics. I introduce four principles (P0–P3) concerning the interpretation of probability, in general and in quantum mechanics, and argue that the defender of completeness must reject either P0 or all of P1–P3, which options both seem unacceptable. The problem is shown to be more fundamental than the measurement problem and to have implications for our understanding of quantum-mechanical contextuality.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark