Switch to: References

Add citations

You must login to add citations.
  1. Slow versus fast growing.Andreas Weiermann - 2002 - Synthese 133 (1-2):13 - 29.
    We survey a selection of results about majorization hierarchies. The main focus is on classical and recent results about the comparison between the slow and fast growing hierarchies.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Investigations on slow versus fast growing: How to majorize slow growing functions nontrivially by fast growing ones. [REVIEW]Andreas Weiermann - 1995 - Archive for Mathematical Logic 34 (5):313-330.
    Let T(Ω) be the ordinal notation system from Buchholz-Schütte (1988). [The order type of the countable segmentT(Ω)0 is — by Rathjen (1988) — the proof-theoretic ordinal the proof-theoretic ordinal ofACA 0 + (Π 1 l −TR).] In particular let ↦Ω a denote the enumeration function of the infinite cardinals and leta ↦ ψ0 a denote the partial collapsing operation on T(Ω) which maps ordinals of T(Ω) into the countable segment TΩ 0 of T(Ω). Assume that the (fast growing) extended Grzegorczyk (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Classifying the provably total functions of pa.Andreas Weiermann - 2006 - Bulletin of Symbolic Logic 12 (2):177-190.
    We give a self-contained and streamlined version of the classification of the provably computable functions of PA. The emphasis is put on illuminating as well as seems possible the intrinsic computational character of the standard cut elimination process. The article is intended to be suitable for teaching purposes and just requires basic familiarity with PA and the ordinals below ε0. (Familiarity with a cut elimination theorem for a Gentzen or Tait calculus is helpful but not presupposed).
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • A proof of strongly uniform termination for Gödel's \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $T$\end{document} by methods from local predicativity. [REVIEW]Andreas Weiermann - 1997 - Archive for Mathematical Logic 36 (6):445-460.
    We estimate the derivation lengths of functionals in Gödel's system \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $T$\end{document} of primitive recursive functionals of finite type by a purely recursion-theoretic analysis of Schütte's 1977 exposition of Howard's weak normalization proof for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $T$\end{document}. By using collapsing techniques from Pohlers' local predicativity approach to proof theory and based on the Buchholz-Cichon and Weiermann 1994 approach to subrecursive hierarchies we define a (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Accessible recursive functions.Stanley S. Wainer - 1999 - Bulletin of Symbolic Logic 5 (3):367-388.
    The class of all recursive functions fails to possess a natural hierarchical structure, generated predicatively from "within". On the other hand, many (proof-theoretically significant) sub-recursive classes do. This paper attempts to measure the limit of predicative generation in this context, by classifying and characterizing those (predictably terminating) recursive functions which can be successively defined according to an autonomy condition of the form: allow recursions only over well-orderings which have already been "coded" at previous levels. The question is: how can a (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Pure Proof Theory. Mathematicians are interested in structures. There is only one way to find the theorems of a structure. Start with an axiom system for the structure and deduce the theorems logically. These axiom systems are the objects of proof-theoretical research. Studying axiom systems there is a series of more. [REVIEW]Wolfram Pohlers - 1996 - Bulletin of Symbolic Logic 2 (2):159-188.
    Apologies. The purpose of the following talk is to give an overview of the present state of aims, methods and results in Pure Proof Theory. Shortage of time forces me to concentrate on my very personal views. This entails that I will emphasize the work which I know best, i.e., work that has been done in the triangle Stanford, Munich and Münster. I am of course well aware that there are as important results coming from outside this triangle and I (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Classifying the phase transition threshold for Ackermannian functions.Eran Omri & Andreas Weiermann - 2009 - Annals of Pure and Applied Logic 158 (3):156-162.
    It is well known that the Ackermann function can be defined via diagonalization from an iteration hierarchy which is built on a start function like the successor function. In this paper we study for a given start function g iteration hierarchies with a sub-linear modulus h of iteration. In terms of g and h we classify the phase transition for the resulting diagonal function from being primitive recursive to being Ackermannian.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation