Switch to: References

Add citations

You must login to add citations.
  1. Evolution in Space and Time: The Second Synthesis of Ecology, Evolutionary Biology, and the Philosophy of Biology.Mitchell Ryan Distin - 2023 - Self-published because fuck the leeches of Big Publishing.
    Change is the fundamental idea of evolution. Explaining the extraordinary biological change we see written in the history of genomes and fossil beds is the primary occupation of the evolutionary biologist. Yet it is a surprising fact that for the majority of evolutionary research, we have rarely studied how evolution typically unfolds in nature, in changing ecological environments, over space and time. While ecology played a major role in the eventual acceptance of the population genetic viewpoint of evolution in the (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  • Natural Selection, Mechanism and Phenomenon.Chuanke Wei - forthcoming - International Studies in the Philosophy of Science:1-14.
    Natural selection is a general process that operates in different populations. To characterise natural selection as a mechanism within the framework of the new mechanistic philosophy, it is required to identify a pertinent phenomenon for which natural selection is responsible. Firstly, every case identified by evolutionary biologists as instances of natural selection must align with this mechanistic characterisation. Secondly, natural selection should genuinely be responsible for the attributed phenomenon. While philosophers often posit producing adaptation as the quintessential phenomenon, Pérez-González and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Evolutionary Approaches to Epistemic Justification.Helen de Cruz, Maarten Boudry, Johan de Smedt & Stefaan Blancke - 2011 - Dialectica 65 (4):517-535.
    What are the consequences of evolutionary theory for the epistemic standing of our beliefs? Evolutionary considerations can be used to either justify or debunk a variety of beliefs. This paper argues that evolutionary approaches to human cognition must at least allow for approximately reliable cognitive capacities. Approaches that portray human cognition as so deeply biased and deficient that no knowledge is possible are internally incoherent and self-defeating. As evolutionary theory offers the current best hope for a naturalistic epistemology, evolutionary approaches (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  • Natural Selection: A Case for the Counterfactual Approach. [REVIEW]Philippe Huneman - 2012 - Erkenntnis 76 (2):171-194.
    This paper investigates the conception of causation required in order to make sense of natural selection as a causal explanation of changes in traits or allele frequencies. It claims that under a counterfactual account of causation, natural selection is constituted by the causal relevance of traits and alleles to the variation in traits and alleles frequencies. The “statisticalist” view of selection (Walsh, Matthen, Ariew, Lewens) has shown that natural selection is not a cause superadded to the causal interactions between individual (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  • Wayward Modeling: Population Genetics and Natural Selection.Bruce Glymour - 2006 - Philosophy of Science 73 (4):369-389.
    Since the introduction of mathematical population genetics, its machinery has shaped our fundamental understanding of natural selection. Selection is taken to occur when differential fitnesses produce differential rates of reproductive success, where fitnesses are understood as parameters in a population genetics model. To understand selection is to understand what these parameter values measure and how differences in them lead to frequency changes. I argue that this traditional view is mistaken. The descriptions of natural selection rendered by population genetics models are (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   27 citations  
  • The Functional Perspective of Organismal Biology.Arno Wouters - 2005 - In Thomas A. C. Reydon & Lia Hemerik (eds.), Current Themes in Theoretical Biology : A Dutch Perspective. Springer. pp. 33--69.
    Following Mayr (1961) evolutionary biologists often maintain that the hallmark of biology is its evolutionary perspective. In this view, biologists distinguish themselves from other natural scientists by their emphasis on why-questions. Why-questions are legitimate in biology but not in other natural sciences because of the selective character of the process by means of which living objects acquire their characteristics. For that reason, why-questions should be answered in terms of natural selection. Functional biology is seen as a reductionist science that applies (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • 1. Really Statistical Explanations and Genetic Drift Really Statistical Explanations and Genetic Drift (pp. 169-188).Marc Lange, Peter Vickers, John Michael, Miles MacLeod, Alexander R. Pruss, David John Baker, Clark Glymour & Simon Fitzpatrick - 2013 - Philosophy of Science 80 (2):169-188.
    Really statistical explanation is a hitherto neglected form of noncausal scientific explanation. Explanations in population biology that appeal to drift are RS explanations. An RS explanation supplies a kind of understanding that a causal explanation of the same result cannot supply. Roughly speaking, an RS explanation shows the result to be mere statistical fallout.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  • The Phylogeny Fallacy and Evolutionary Causation (preprint).Tiago Rama - manuscript
    Direct download  
     
    Export citation  
     
    Bookmark  
  • Philosophers on function. [REVIEW]Arno Wouters - 2003 - Acta Biotheoretica 51 (3):223-235.
    Review of André Ariew, Robert Cummins & Mark Perlman (eds.) *Functions: New Essays in the Philosophy of Psychology and Biology* (2002).
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • The many meanings of “cost” and “benefit:” biological altruism, biological agency, and the identification of social behaviours.Peter J. Woodford - 2019 - Biology and Philosophy 34 (1):4.
    The puzzle of how altruism can evolve has been at the center of recent debates over Hamilton’s Rule, inclusive fitness, and kin-selection. In this paper, I use recent debates over altruism and Hamilton’s legacy as an example to illustrate a more general problem in evolutionary theory that has philosophical significance; I attempt to explain this significance and to draw a variety of conclusions about it. The problem is that specific behaviours and general concepts of organism agency and intentionality are defined (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Sources of evolutionary contingency: chance variation and genetic drift.T. Y. William Wong - 2020 - Biology and Philosophy 35 (4):1-33.
    Contingency-theorists have gestured to a series of phenomena such as random mutations or rare Armageddon-like events as that which accounts for evolutionary contingency. These phenomena constitute a class, which may be aptly called the ‘sources of contingency’. In this paper, I offer a probabilistic conception of what it is to be a source of contingency and then examine two major candidates: chance variation and genetic drift, both of which have historically been taken to be ‘chancy’ in a number of different (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Variance, Invariance and Statistical Explanation.D. M. Walsh - 2015 - Erkenntnis 80 (S3):469-489.
    The most compelling extant accounts of explanation casts all explanations as causal. Yet there are sciences, theoretical population biology in particular, that explain their phenomena by appeal to statistical, non-causal properties of ensembles. I develop a generalised account of explanation. An explanation serves two functions: metaphysical and cognitive. The metaphysical function is discharged by identifying a counterfactually robust invariance relation between explanans event and explanandum. The cognitive function is discharged by providing an appropriate description of this relation. I offer examples (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  • The pomp of superfluous causes: The interpretation of evolutionary theory.Denis M. Walsh - 2007 - Philosophy of Science 74 (3):281-303.
    There are two competing interpretations of the modern synthesis theory of evolution: the dynamical (also know as ‘traditional’) and the statistical. The dynamical interpretation maintains that explanations offered under the auspices of the modern synthesis theory articulate the causes of evolution. It interprets selection and drift as causes of population change. The statistical interpretation holds that modern synthesis explanations merely cite the statistical structure of populations. This paper offers a defense of statisticalism. It argues that a change in trait frequencies (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   107 citations  
  • Not a sure thing: Fitness, probability, and causation.Denis M. Walsh - 2010 - Philosophy of Science 77 (2):147-171.
    In evolutionary biology changes in population structure are explained by citing trait fitness distribution. I distinguish three interpretations of fitness explanations—the Two‐Factor Model, the Single‐Factor Model, and the Statistical Interpretation—and argue for the last of these. These interpretations differ in their degrees of causal commitment. The first two hold that trait fitness distribution causes population change. Trait fitness explanations, according to these interpretations, are causal explanations. The last maintains that trait fitness distribution correlates with population change but does not cause (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   56 citations  
  • Four Pillars of Statisticalism.Denis M. Walsh, André Ariew & Mohan Matthen - 2017 - Philosophy, Theory, and Practice in Biology 9 (1):1-18.
    Over the past fifteen years there has been a considerable amount of debate concerning what theoretical population dynamic models tell us about the nature of natural selection and drift. On the causal interpretation, these models describe the causes of population change. On the statistical interpretation, the models of population dynamics models specify statistical parameters that explain, predict, and quantify changes in population structure, without identifying the causes of those changes. Selection and drift are part of a statistical description of population (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   28 citations  
  • Descriptions and models: Some responses to Abrams.Denis M. Walsh - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (3):302-308.
  • Bookkeeping or metaphysics? The units of selection debate.D. M. Walsh - 2004 - Synthese 138 (3):337 - 361.
    The Units of Selection debate is a dispute about the causes of population change. I argue that it is generated by a particular `dynamical'' interpretation of natural selection theory, according to which natural selection causes differential survival and reproduction of individuals and natural selection explanations cite these causes. I argue that the dynamical interpretation is mistaken and offer in outline an alternative, `statistical'' interpretation, according to which natural selection theory is a fancy kind of `bookkeeping''. It explains by citing the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  • A Conceptual Analysis of Evolutionary Theory for Teacher Education.Esther M. van Dijk & Thomas A. C. Reydon - 2010 - Science & Education 19 (6-8):655-677.
  • The mystery of the mystery of common genetic diseases.Sean A. Valles - 2010 - Biology and Philosophy 25 (2):183-201.
    Common monogenic genetic diseases, ones that have unexpectedly high frequencies in certain populations, have attracted a great number of conflicting evolutionary explanations. This paper will attempt to explain the mystery of why two particularly extensively studied common genetic diseases, Tay Sachs disease and cystic fibrosis, remain evolutionary mysteries despite decades of research. I review the most commonly cited evolutionary processes used to explain common genetic diseases: reproductive compensation, random genetic drift (in the context of founder effect), and especially heterozygote advantage. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • How much can we know about the causes of evolutionary trends?Derek D. Turner - 2009 - Biology and Philosophy 24 (3):341-357.
    One of the first questions that paleontologists ask when they identify a large-scale trend in the fossil record (e.g., size increase, complexity increase) is whether it is passive or driven. In this article, I explore two questions about driven trends: (1) what is the underlying cause or source of the directional bias? and (2) has the strength of the directional bias changed over time? I identify two underdetermination problems that prevent scientists from giving complete answers to these two questions.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Dual Landscape Model of Adaptation and Niche Construction.Mark M. Tanaka, Peter Godfrey-Smith & Benjamin Kerr - 2020 - Philosophy of Science 87 (3):478-498.
    Wright’s “adaptive landscape” has been influential in evolutionary thinking but controversial, especially because the landscape that organisms encounter is altered by the evolutionary process itsel...
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Current Status of the Philosophy of Biology.Peter Takacs & Michael Ruse - 2013 - Science & Education 22 (1):5-48.
  • Selection, drift, and the “forces” of evolution.Christopher Stephens - 2004 - Philosophy of Science 71 (4):550-570.
    Recently, several philosophers have challenged the view that evolutionary theory is usefully understood by way of an analogy with Newtonian mechanics. Instead, they argue that evolutionary theory is merely a statistical theory. According to this alternate approach, natural selection and random genetic drift are not even causes, much less forces. I argue that, properly understood, the Newtonian analogy is unproblematic and illuminating. I defend the view that selection and drift are causes in part by attending to a pair of important (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   95 citations  
  • Population Pluralism and Natural Selection.Jacob Stegenga - 2016 - British Journal for the Philosophy of Science 67 (1):1-29.
    I defend a radical interpretation of biological populations—what I call population pluralism—which holds that there are many ways that a particular grouping of individuals can be related such that the grouping satisfies the conditions necessary for those individuals to evolve together. More constraining accounts of biological populations face empirical counter-examples and conceptual difficulties. One of the most intuitive and frequently employed conditions, causal connectivity—itself beset with numerous difficulties—is best construed by considering the relevant causal relations as ‘thick’ causal concepts. I (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  • “Population” Is Not a Natural Kind of Kinds.Jacob Stegenga - 2010 - Biological Theory 5 (2):154-160.
    Millstein (2009) argues against conceptual pluralism with respect to the definition of “population,” and proposes her own definition of the term. I challenge both Millstein's negative arguments against conceptual pluralism and her positive proposal for a singular definition of population. The concept of population, I argue, does not refer to a natural kind; populations are constructs of biologists variably defined by contexts of inquiry.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • “Population” Is Not a Natural Kind of Kinds.Jacob Stegenga - 2010 - Biological Theory 5 (2):154-160.
    Millstein argues against conceptual pluralism with respect to the definition of “population,” and proposes her own definition of the term. I challenge both Millstein’s negative arguments against conceptual pluralism and her positive proposal for a singular definition of population. The concept of population, I argue, does not refer to a natural kind; popula tions are constructs of biologists variably defined by contexts of inquiry.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mathematical Explanations in Evolutionary Biology or Naturalism? A Challenge for the Statisticalist.Fabio Sterpetti - 2021 - Foundations of Science 27 (3):1073-1105.
    This article presents a challenge that those philosophers who deny the causal interpretation of explanations provided by population genetics might have to address. Indeed, some philosophers, known as statisticalists, claim that the concept of natural selection is statistical in character and cannot be construed in causal terms. On the contrary, other philosophers, known as causalists, argue against the statistical view and support the causal interpretation of natural selection. The problem I am concerned with here arises for the statisticalists because the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Forces and Causes in Evolutionary Theory.Christopher Stephens - 2010 - Philosophy of Science 77 (5):716-727.
    The traditional view of evolutionary theory asserts that we can usefully understand natural selection, drift, mutation, migration, and the system of mating as forces that cause evolutionary change. Recently, Denis Walsh and Robert Brandon have objected to this view. Walsh argues that the traditional view faces a fatal dilemma and that the force analogy must be rejected altogether. Brandon accepts the force analogy but argues that drift, rather than the Hardy-Weinberg law, is the best candidate for a zero-force law. Here (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  • Trait fitness is not a propensity, but fitness variation is.Elliott Sober - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (3):336-341.
    The propensity interpretation of fitness draws on the propensity interpretation of probability, but advocates of the former have not attended sufficiently to problems with the latter. The causal power of C to bring about E is not well-represented by the conditional probability Pr. Since the viability fitness of trait T is the conditional probability Pr, the viability fitness of the trait does not represent the degree to which having the trait causally promotes surviving. The same point holds for fertility fitness. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   31 citations  
  • Natural Kindness.Matthew H. Slater - 2015 - British Journal for the Philosophy of Science 66 (2):375-411.
    Philosophers have long been interested in a series of interrelated questions about natural kinds. What are they? What role do they play in science and metaphysics? How do they contribute to our epistemic projects? What categories count as natural kinds? And so on. Owing, perhaps, to different starting points and emphases, we now have at hand a variety of conceptions of natural kinds—some apparently better suited than others to accommodate a particular sort of inquiry. Even if coherent, this situation isn’t (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   116 citations  
  • Current Perspectives in Philosophy of Biology.Joaquin Suarez Ruiz & Rodrigo A. Lopez Orellana - 2019 - Humanities Journal of Valparaiso 14:7-426.
    Current Perspectives in Philosophy of Biology.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  • How Jerry Fodor slid down the slippery slope to Anti-Darwinism, and how we can avoid the same fate.Alex Rosenberg - 2013 - European Journal for Philosophy of Science 3 (1):1-17.
    There is only one physically possible process that builds and operates purposive systems in nature: natural selection. What it does is build and operate systems that look to us purposive, goal directed, teleological. There really are not any purposes in nature and no purposive processes ether. It is just one vast network of linked causal chains. Darwinian natural selection is the only process that could produce the appearance of purpose. That is why natural selection must have built and must continually (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • How are Models and Explanations Related?Yasha Rohwer & Collin Rice - 2016 - Erkenntnis 81 (5):1127-1148.
    Within the modeling literature, there is often an implicit assumption about the relationship between a given model and a scientific explanation. The goal of this article is to provide a unified framework with which to analyze the myriad relationships between a model and an explanation. Our framework distinguishes two fundamental kinds of relationships. The first is metaphysical, where the model is identified as an explanation or as a partial explanation. The second is epistemological, where the model produces understanding that is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  • El estatus metateórico de ZFEL.Ariel Jonathan Roffé & Santiago Ginnobili - 2019 - Humanities Journal of Valparaiso 14:57-73.
    En un libro reciente McShea y Brandon defienden que la diversidad y la complejidad de la vida se explican, principalmente, por la acción de un principio que llaman “la ley evolutiva de fuerzas cero” o “ZFEL”. Tal principio actuaría de un modo implícito por detrás de muchas explicaciones de la biología, pero nunca habría sido explicitado. Asumiendo que esta idea es interesante, y que los autores en cuestión tienen razón, discutiremos el modo metateórico en que presentan dicho principio, como siendo (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Drift as constitutive: conclusions from a formal reconstruction of population genetics.Ariel Jonathan Roffé - 2019 - History and Philosophy of the Life Sciences 41 (4):55.
    This article elaborates on McShea and Brandon’s idea that drift is unlike the rest of the evolutionary factors because it is constitutive rather than imposed on the evolutionary process. I show that the way they spelled out this idea renders it inadequate and is the reason why it received some objections. I propose a different way in which their point could be understood, that rests on two general distinctions. The first is a distinction between the underlying mathematical apparatus used to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Drift as constitutive: conclusions from a formal reconstruction of population genetics.Ariel Jonathan Roffé - 2019 - History and Philosophy of the Life Sciences 41 (4):1-24.
    This article elaborates on McShea and Brandon’s idea that drift is unlike the rest of the evolutionary factors because it is constitutive rather than imposed on the evolutionary process. I show that the way they spelled out this idea renders it inadequate and is the reason why it received some objections. I propose a different way in which their point could be understood, that rests on two general distinctions. The first is a distinction between the underlying mathematical apparatus used to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • (Mis)interpreting Mathematical Models: Drift as a Physical Process.Michael R. Dietrich, Robert A. Skipper Jr & Roberta L. Millstein - 2009 - Philosophy, Theory, and Practice in Biology 1 (20130604):e002.
    Recently, a number of philosophers of biology have endorsed views about random drift that, we will argue, rest on an implicit assumption that the meaning of concepts such as drift can be understood through an examination of the mathematical models in which drift appears. They also seem to implicitly assume that ontological questions about the causality of terms appearing in the models can be gleaned from the models alone. We will question these general assumptions by showing how the same equation (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   26 citations  
  • Moving Beyond Causes: Optimality Models and Scientific Explanation.Collin Rice - 2013 - Noûs 49 (3):589-615.
    A prominent approach to scientific explanation and modeling claims that for a model to provide an explanation it must accurately represent at least some of the actual causes in the event's causal history. In this paper, I argue that many optimality explanations present a serious challenge to this causal approach. I contend that many optimality models provide highly idealized equilibrium explanations that do not accurately represent the causes of their target system. Furthermore, in many contexts, it is in virtue of (...)
    Direct download  
     
    Export citation  
     
    Bookmark   93 citations  
  • Models Don’t Decompose That Way: A Holistic View of Idealized Models.Collin Rice - 2019 - British Journal for the Philosophy of Science 70 (1):179-208.
    Many accounts of scientific modelling assume that models can be decomposed into the contributions made by their accurate and inaccurate parts. These accounts then argue that the inaccurate parts of the model can be justified by distorting only what is irrelevant. In this paper, I argue that this decompositional strategy requires three assumptions that are not typically met by our best scientific models. In response, I propose an alternative view in which idealized models are characterized as holistically distorted representations that (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   31 citations  
  • Idealized models, holistic distortions, and universality.Collin Rice - 2018 - Synthese 195 (6):2795-2819.
    In this paper, I first argue against various attempts to justify idealizations in scientific models that explain by showing that they are harmless and isolable distortions of irrelevant features. In response, I propose a view in which idealized models are characterized as providing holistically distorted representations of their target system. I then suggest an alternative way that idealized modeling can be justified by appealing to universality.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   31 citations  
  • How to Reconcile a Unified Account of Explanation with Explanatory Diversity.Collin Rice & Yasha Rohwer - 2020 - Foundations of Science 26 (4):1025-1047.
    The concept of explanation is central to scientific practice. However, scientists explain phenomena in very different ways. That is, there are many different kinds of explanation; e.g. causal, mechanistic, statistical, or equilibrium explanations. In light of the myriad kinds of explanation identified in the literature, most philosophers of science have adopted some kind of explanatory pluralism. While pluralism about explanation seems plausible, it faces a dilemma Explanation beyond causation, Oxford University Press, Oxford, pp 39–56, 2018). Either there is nothing that (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Factive scientific understanding without accurate representation.Collin C. Rice - 2016 - Biology and Philosophy 31 (1):81-102.
    This paper analyzes two ways idealized biological models produce factive scientific understanding. I then argue that models can provide factive scientific understanding of a phenomenon without providing an accurate representation of the features of their real-world target system. My analysis of these cases also suggests that the debate over scientific realism needs to investigate the factive scientific understanding produced by scientists’ use of idealized models rather than the accuracy of scientific models themselves.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  • Explanatory schema and the process of model building.Collin Rice, Yasha Rohwer & André Ariew - 2019 - Synthese 196 (11):4735-4757.
    In this paper, we argue that rather than exclusively focusing on trying to determine if an idealized model fits a particular account of scientific explanation, philosophers of science should also work on directly analyzing various explanatory schemas that reveal the steps and justification involved in scientists’ use of highly idealized models to formulate explanations. We develop our alternative methodology by analyzing historically important cases of idealized statistical modeling that use a three-step explanatory schema involving idealization, mathematical operation, and explanatory interpretation.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • The proper role of history in evolutionary explanations.Thomas A. C. Reydon - 2023 - Noûs 57 (1):162-187.
    Evolutionary explanations are not only common in the biological sciences, but also widespread outside biology. But an account of how evolutionary explanations perform their explanatory work is still lacking. This paper develops such an account. I argue that available accounts of explanations in evolutionary science miss important parts of the role of history in evolutionary explanations. I argue that the historical part of evolutionary science should be taken as having genuine explanatory force, and that it provides how‐possibly explanations sensu Dray. (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Philosophy of biology, German style: Frankfurt am Main: Suhrkamp, 2005; 457 pp., € 16,-, ISBN 3-518-29345-1 Frankfurt am Main: Suhrkamp, 2005; 457 pp., € 16,-, ISBN 3-518-29345-1 Review of Ulrich Krohs and Georg Toepfer : Philosophie der Biologie: Eine Einführung [Philosophy of Biology: An Introduction].Thomas A. C. Reydon - 2007 - Biology and Philosophy 22 (4):619-626.
  • Philosophy of biology, German styleReview of Ulrich Krohs and Georg Toepfer : Philosophie der Biologie: Eine Einführung [Philosophy of Biology: An Introduction].Thomas A. C. Reydon - 2007 - Biology and Philosophy 22 (4):619-626.
  • Misconceptions, conceptual pluralism, and conceptual toolkits: bringing the philosophy of science to the teaching of evolution.Thomas A. C. Reydon - 2021 - European Journal for Philosophy of Science 11 (2):1-23.
    This paper explores how work in the philosophy of science can be used when teaching scientific content to science students and when training future science teachers. I examine the debate on the concept of fitness in biology and in the philosophy of biology to show how conceptual pluralism constitutes a problem for the conceptual change model, and how philosophical work on conceptual clarification can be used to address that problem. The case of fitness exemplifies how the philosophy of science offers (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Probabilistic causation and the explanatory role of natural selection.Pablo Razeto-Barry & Ramiro Frick - 2011 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 42 (3):344-355.
  • Probabilistic causation and the explanatory role of natural selection.Pablo Razeto-Barry & Ramiro Frick - 2011 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 42 (3):344-355.
    The explanatory role of natural selection is one of the long-term debates in evolutionary biology. Nevertheless, the consensus has been slippery because conceptual confusions and the absence of a unified, formal causal model that integrates different explanatory scopes of natural selection. In this study we attempt to examine two questions: (i) What can the theory of natural selection explain? and (ii) Is there a causal or explanatory model that integrates all natural selection explananda? For the first question, we argue that (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  • A relic of design: against proper functions in biology.Emanuele Ratti & Pierre-Luc Germain - 2022 - Biology and Philosophy 37 (4):1-28.
    The notion of biological function is fraught with difficulties—intrinsically and irremediably so, we argue. The physiological practice of functional ascription originates from a time when organisms were thought to be designed and remained largely unchanged since. In a secularized worldview, this creates a paradox which accounts of functions as selected effect attempt to resolve. This attempt, we argue, misses its target in physiology and it brings problems of its own. Instead, we propose that a better solution to the conundrum of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations