Switch to: References

Add citations

You must login to add citations.
  1. Abstraction and Four Kinds of Invariance.Roy T. Cook - 2017 - Philosophia Mathematica 25 (1):3–25.
    Fine and Antonelli introduce two generalizations of permutation invariance — internal invariance and simple/double invariance respectively. After sketching reasons why a solution to the Bad Company problem might require that abstraction principles be invariant in one or both senses, I identify the most fine-grained abstraction principle that is invariant in each sense. Hume’s Principle is the most fine-grained abstraction principle invariant in both senses. I conclude by suggesting that this partially explains the success of Hume’s Principle, and the comparative lack (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Nuisance Principle in Infinite Settings.Sean C. Ebels-Duggan - 2015 - Thought: A Journal of Philosophy 4 (4):263-268.
    Neo-Fregeans have been troubled by the Nuisance Principle, an abstraction principle that is consistent but not jointly satisfiable with the favored abstraction principle HP. We show that logically this situation persists if one looks at joint consistency rather than satisfiability: under a modest assumption about infinite concepts, NP is also inconsistent with HP.
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Is Hume’s Principle Analytic?Eamon Darnell & Aaron Thomas-Bolduc - forthcoming - Synthese 198 (1):169-185.
    The question of the analyticity of Hume’s Principle is central to the neo-logicist project. We take on this question with respect to Frege’s definition of analyticity, which entails that a sentence cannot be analytic if it can be consistently denied within the sphere of a special science. We show that HP can be denied within non-standard analysis and argue that if HP is taken to depend on Frege’s definition of number, it isn’t analytic, and if HP is taken to be (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Identifying Finite Cardinal Abstracts.Sean C. Ebels-Duggan - 2021 - Philosophical Studies 178 (5):1603-1630.
    Objects appear to fall into different sorts, each with their own criteria for identity. This raises the question of whether sorts overlap.ionists about numbers—those who think natural numbers are objects characterized by abstraction principles—face an acute version of this problem. Many abstraction principles appear to characterize the natural numbers. If each abstraction principle determines its own sort, then there is no single subject-matter of arithmetic—there are too many numbers. That is, unless objects can belong to more than one sort. But (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Robert Lorne Victor Hale FRSE May 4, 1945 – December 12, 2017.Roy T. Cook & Stewart Shapiro - 2018 - Philosophia Mathematica 26 (2):266-274.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Abstraction Principles and the Classification of Second-Order Equivalence Relations.Sean C. Ebels-Duggan - 2019 - Notre Dame Journal of Formal Logic 60 (1):77-117.
    This article improves two existing theorems of interest to neologicist philosophers of mathematics. The first is a classification theorem due to Fine for equivalence relations between concepts definable in a well-behaved second-order logic. The improved theorem states that if an equivalence relation E is defined without nonlogical vocabulary, then the bicardinal slice of any equivalence class—those equinumerous elements of the equivalence class with equinumerous complements—can have one of only three profiles. The improvements to Fine’s theorem allow for an analysis of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • What Russell Should Have Said to Burali–Forti.Salvatore Florio & Graham Leach-Krouse - 2017 - Review of Symbolic Logic 10 (4):682-718.
    The paradox that appears under Burali-Forti’s name in many textbooks of set theory is a clever piece of reasoning leading to an unproblematic theorem. The theorem asserts that the ordinals do not form a set. For such a set would be—absurdly—an ordinal greater than any ordinal in the set of all ordinals. In this article, we argue that the paradox of Burali-Forti is first and foremost a problem about concept formation by abstraction, not about sets. We contend, furthermore, that some (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations