Switch to: References

Add citations

You must login to add citations.
  1. John von Neumann's mathematical “Utopia” in quantum theory.Giovanni Valente - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (4):860-871.
    This paper surveys John von Neumann's work on the mathematical foundations of quantum theories in the light of Hilbert's Sixth Problem concerning the geometrical axiomatization of physics. We argue that in von Neumann's view geometry was so tied to logic that he ultimately developed a logical interpretation of quantum probabilities. That motivated his abandonment of Hilbert space in favor of von Neumann algebras, specifically the type II1II1 factors, as the proper limit of quantum mechanics in infinite dimensions. Finally, we present (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Birth of quantum logic.Miklós Rédei - 2007 - History and Philosophy of Logic 28 (2):107-122.
    By quoting extensively from unpublished letters written by John von Neumann to Garret Birkhoff during the preparatory phase (in 1935) of their ground-breaking 1936 paper that established quantum logic, the main steps in the thought process leading to the 1936 Birkhoff–von Neumann paper are reconstructed. The reconstruction makes it clear why Birkhoff and von Neumann rejected the notion of quantum logic as the projection lattice of an infinite dimensional complex Hilbert space and why they postulated in their 1936 paper that (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • In defense of a “single-world” interpretation of quantum mechanics.Jeffrey Bub - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72:251-255.
  • Two dogmas about quantum mechanics.Jeffrey Bub & Itamar Pitowsky - 2007 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory & Reality. Oxford University Press.
    We argue that the intractable part of the measurement problem -- the 'big' measurement problem -- is a pseudo-problem that depends for its legitimacy on the acceptance of two dogmas. The first dogma is John Bell's assertion that measurement should never be introduced as a primitive process in a fundamental mechanical theory like classical or quantum mechanics, but should always be open to a complete analysis, in principle, of how the individual outcomes come about dynamically. The second dogma is the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   31 citations