Switch to: References

Add citations

You must login to add citations.
  1. What was classical genetics?C. Kenneth Waters - 2004 - Studies in History and Philosophy of Science Part A 35 (4):783-809.
    I present an account of classical genetics to challenge theory-biased approaches in the philosophy of science. Philosophers typically assume that scientific knowledge is ultimately structured by explanatory reasoning and that research programs in well-established sciences are organized around efforts to fill out a central theory and extend its explanatory range. In the case of classical genetics, philosophers assume that the knowledge was structured by T. H. Morgan’s theory of transmission and that research throughout the later 1920s, 30s, and 40s was (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   60 citations  
  • Reductionism or holism? The two faces of biology.Joseph A. Walker & Thomas E. Cloete - 2023 - HTS Theological Studies 79 (3):7.
    Reductionism and holism, that is, antireductionism, are two of the prevailing paradigms within the philosophy of biology. Reductionists strive to understand biological phenomena by reducing them to a series of levels of complexity with each lower level forming the foundation for the subsequent level, by mapping such biological phenomena inasmuch as possible to the principal phenomena within the fundamental sciences of chemistry and physics. In this way, complex phenomena can be reduced to assemblages of more elementary explananda. Holism, in counterpart, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Theorizing and Representational Practices in Classical Genetics.Marion Vorms - 2011 - Biological Theory 7 (4):311-324.
    In this paper, I wish to challenge theory-biased approaches to scientific knowledge, by arguing for a study of theorizing, as a cognitive activity, rather than of theories, as abstract structures independent from the agents’ understanding of them. Such a study implies taking into account scientists’ reasoning processes, and their representational practices. Here, I analyze the representational practices of geneticists in the 1910s, as a means of shedding light on the content of classical genetics. Most philosophical accounts of classical genetics fail (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Reduction, elimination, and levels: The case of the LTP-learning link.Maurice K. D. Schouten & Huib Looren De Jong - 1999 - Philosophical Psychology 12 (3):237 – 262.
    We argue in this paper that so-called new wave reductionism fails to capture the nature of the interlevel relations between psychology and neuroscience. Bickle (1995, Psychoneural reduction of the genuinely cognitive: some accomplished facts, Philosophical Psychology, 8, 265-285; 1998, Psychoneural reduction: the new wave, Cambridge, MA: MIT Press) has claimed that a (bottom-up) reduction of the psychological concepts of learning and memory to the concepts of neuroscience has in fact already been accomplished. An investigation of current research on the phenomenon (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  • Comments on complexity and experimentation in biology.Richard M. Burian - 1997 - Philosophy of Science 64 (4):291.
    Biology deals, notoriously, with complex systems. In discussing biological methodology, all three papers in this symposium honor the complexity of biological subject matter by preferring models and theories built to reflect the details of complex systems to models based on broad general principles or laws. Rheinberger's paper, the most programmatic of the three, provides a framework for the epistemology of discovery in complex systems. A fundamental problem is raised for Rheinberger's epistemology, namely, how to understand the referential continuity of the (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Epistemic Goal of a Concept: Accounting for the Rationality of Semantic Change and Variation.Ingo Brigandt - 2010 - Synthese 177 (1):19-40.
    The discussion presents a framework of concepts that is intended to account for the rationality of semantic change and variation, suggesting that each scientific concept consists of three components of content: 1) reference, 2) inferential role, and 3) the epistemic goal pursued with the concept’s use. I argue that in the course of history a concept can change in any of these components, and that change in the concept’s inferential role and reference can be accounted for as being rational relative (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   74 citations  
  • Explanation in Biology: Reduction, Pluralism, and Explanatory Aims.Ingo Brigandt - 2011 - Science & Education 22 (1):69-91.
    This essay analyzes and develops recent views about explanation in biology. Philosophers of biology have parted with the received deductive-nomological model of scientific explanation primarily by attempting to capture actual biological theorizing and practice. This includes an endorsement of different kinds of explanation (e.g., mathematical and causal-mechanistic), a joint study of discovery and explanation, and an abandonment of models of theory reduction in favor of accounts of explanatory reduction. Of particular current interest are philosophical accounts of complex explanations that appeal (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   44 citations  
  • The Referential Convergence of Gene Concepts Based on Classical and Molecular Analyses.Tudor M. Baetu - 2010 - International Studies in the Philosophy of Science 24 (4):411-427.
    Kenneth Waters and Marcel Weber argue that the joint use of distinct gene concepts and the transfer of knowledge between classical and molecular analyses in contemporary scientific practice is possible because classical and molecular concepts of the gene refer to overlapping chromosomal segments and the DNA sequences associated with these segments. However, while pointing in the direction of coreference, both authors also agree that there is a considerable divergence between the actual sequences that count as genes in classical genetics and (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Genes after the human genome project.Tudor M. Baetu - 2012 - Studies in History and Philosophy of Biological and Biomedical Sciences 43 (1):191-201.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Special Issue: Philosophical Considerations in the Teaching of Biology. Part I, Philosophy of Biology and Biological Explanation.Kostas Kampourakis (ed.) - 2013 - Springer (Science & Education).
  • Molecular genetics.Ken Waters - 2008 - Stanford Encyclopedia of Philosophy.
    Direct download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Gene.Hans-Jörg Rheinberger - 2008 - Stanford Encyclopedia of Philosophy.
    Direct download  
     
    Export citation  
     
    Bookmark   22 citations  
  • A Theory of Conceptual Advance: Explaining Conceptual Change in Evolutionary, Molecular, and Evolutionary Developmental Biology.Ingo Brigandt - 2006 - Dissertation, University of Pittsburgh
    The theory of concepts advanced in the dissertation aims at accounting for a) how a concept makes successful practice possible, and b) how a scientific concept can be subject to rational change in the course of history. Traditional accounts in the philosophy of science have usually studied concepts in terms only of their reference; their concern is to establish a stability of reference in order to address the incommensurability problem. My discussion, in contrast, suggests that each scientific concept consists of (...)
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Exemplarising the Origin of Genetics: A Path to Genetics (From Mendel to Bateson).Yafeng Shan - 2016 - Dissertation, University College London
    This thesis aims to propose and defend a new way of analysing and understanding the origin of genetics (from Mendel to Bateson). Traditionally philosophers used to analyse the history of genetics in terms of theories. However, I will argue that this theory-based approach is highly problematic. In Chapter 1, I shall critically review the theory-driven approach to analysisng the history of genetics and diagnose its problems. In Chapter 2, inspired by Kuhn’s concept “exemplar”, I shall make a new interpretation of (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Beyond theoretical reduction and layer-cake antireduction: How DNA retooled genetics and transformed biological practice.C. Kenneth Waters - unknown
    Watson and Crick’s discovery of the structure of DNA led to developments that transformed many biological sciences. But what were the relevant developments and how did they transform biology? Much of the philosophical discussion concerning this question can be organized around two opposing views: theoretical reductionism and layer-cake antireductionism. Theoretical reductionist and their anti-reductionist foes hold two assumptions in common. First, both hold that biological knowledge is structured like a layer cake, with some biological sciences, such as molecular biology cast (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   22 citations