Citations of:
Add citations
You must login to add citations.
|
|
Fairness is one of the most prominent values in the Ethics and Artificial Intelligence debate and, specifically, in the discussion on algorithmic decision-making. However, while the need for fairness in ADM is widely acknowledged, the very concept of fairness has not been sufficiently explored so far. Our paper aims to fill this gap and claims that an ethically informed re-definition of fairness is needed to adequately investigate fairness in ADM. To achieve our goal, after an introductory section aimed at clarifying (...) No categories |
|
In this article, we focus on the attribution of moral responsibility for the actions of autonomous weapons systems (AWS). To do so, we suggest that the responsibility gap can be closed if human agents can take meaningful moral responsibility for the actions of AWS. This is a moral responsibility attributed to individuals in a justified and fair way and which is accepted by individuals as an assessment of their own moral character. We argue that, given the unpredictability of AWS, meaningful (...) |
|
In the last few years, we have witnessed a surge in scholarly interest and scientific evidence of how algorithms can produce discriminatory outcomes, especially with regard to gender and race. However, the analysis of fairness and bias in AI, important for the debate of AI for social good, has paid insufficient attention to the category of age and older people. Ageing populations have been largely neglected during the turn to digitality and AI. In this article, the concept of AI ageism (...) |
|
This paper offers three contributions to the burgeoning movements of AI for Social Good and AI and the United Nations Sustainable Development Goals. First, we introduce the SDG-Intense Evaluation framework that aims to situate variegated automated/AI models in a larger ecosystem of computational approaches to advance the SDGs. To foster knowledge collaboration for solving complex social and environmental problems encompassed by the SDGs, the SDGIE framework details a benchmark structure of data-algorithm-output to effectively standardize AI approaches to the SDGs. Second, (...) |
|
The world’s current model for economic development is unsustainable. It encourages high levels of resource extraction, consumption, and waste that undermine positive environmental outcomes. Transitioning to a circular economy (CE) model of development has been proposed as a sustainable alternative. Artificial intelligence (AI) is a crucial enabler for CE. It can aid in designing robust and sustainable products, facilitate new circular business models, and support the broader infrastructures needed to scale circularity. However, to date, considerations of the ethical implications of (...) |
|
Over the past few years, there has been a proliferation of artificial intelligence strategies, released by governments around the world, that seek to maximise the benefits of AI and minimise potential harms. This article provides a comparative analysis of the European Union and the United States’ AI strategies and considers the visions of a ‘Good AI Society’ that are forwarded in key policy documents and their opportunity costs, the extent to which the implementation of each vision is living up to (...) |
|
The effects that artificial intelligence (AI) technologies will have on society in the short- and long-term are inherently uncertain. For this reason, many governments are avoiding strict command and control regulations for this technology and instead rely on softer ethics-based approaches. The Russian approach to regulating AI is characterized by the prevalence of unenforceable ethical principles implemented via industry self-regulation. We analyze the emergence of the regulatory regime for AI in Russia to illustrate the limitations of this approach. The article (...) |
|
Digital Twins are conceptualised in the academic technical discourse as real-time realistic digital representations of physical entities. Originating from product engineering, the Digital Twin quickly advanced into other fields, including the life sciences and earth sciences. Digital Twins are seen by the tech sector as the new promising tool for efficiency and optimisation, while governmental agencies see it as a fruitful means for improving decision-making to meet sustainability goals. A striking example of the latter is the European Commission who wishes (...) |
|
The paper explores some normative challenges concerning the integration of Machine Learning (ML) algorithms into anticorruption in public institutions. The challenges emerge from the tensions between an approach treating ML algorithms as allies to an exclusively legalistic conception of anticorruption and an approach seeing them within an institutional ethics of office accountability. We explore two main challenges. One concerns the variable opacity of some ML algorithms, which may affect public officeholders’ capacity to account for institutional processes relying upon ML techniques. (...) |
|
Algorithmic systems are increasingly used by state agencies to inform decisions about humans. They produce scores on risks of recidivism in criminal justice, indicate the probability for a job seeker to find a job in the labor market, or calculate whether an applicant should get access to a certain university program. In this contribution, we take an interdisciplinary perspective, provide a bird’s eye view of the different key decisions that are to be taken when state actors decide to use an (...) No categories |
|
|
|
The initial successes in recent years in harnessing machine learning technologies to improve medical practice and benefit patients have attracted attention in a wide range of healthcare fields. Particularly, it should be achieved by providing automated decision recommendations to the treating clinician. Some hopes placed in such ML-based systems for healthcare, however, seem to be unwarranted, at least partially because of their inherent lack of transparency, although their results seem convincing in accuracy and reliability. Skepticism arises when the physician as (...) No categories |
|
|
|
This review seeks to present a comprehensive picture of recent discussions in the social sciences of the anticipated impact of AI on the world of work. Issues covered include: technological unemployment, algorithmic management, platform work and the politics of AI work. The review identifies the major disciplinary and methodological perspectives on AI’s impact on work, and the obstacles they face in making predictions. Two parameters influencing the development and deployment of AI in the economy are highlighted: the capitalist imperative and (...) |
|
To analyze which ethically relevant biases have been identified by academic literature in artificial intelligence algorithms developed either for patient risk prediction and triage, or for contact tracing to deal with the COVID-19 pandemic. Additionally, to specifically investigate whether the role of social determinants of health have been considered in these AI developments or not. We conducted a scoping review of the literature, which covered publications from March 2020 to April 2021. Studies mentioning biases on AI algorithms developed for contact (...) |
|
Among the myriad of technical approaches and abstract guidelines proposed to the topic of AI bias, there has been an urgent call to translate the principle of fairness into the operational AI reality with the involvement of social sciences specialists to analyse the context of specific types of bias, since there is not a generalizable solution. This article offers an interdisciplinary contribution to the topic of AI and societal bias, in particular against the poor, providing a conceptual framework of the (...) |
|
In this article, we analyse the role that artificial intelligence (AI) could play, and is playing, to combat global climate change. We identify two crucial opportunities that AI offers in this domain: it can help improve and expand current understanding of climate change, and it can contribute to combatting the climate crisis effectively. However, the development of AI also raises two sets of problems when considering climate change: the possible exacerbation of social and ethical challenges already associated with AI, and (...) |
|
There is a long history of the science of intelligent machines and its potential to provide scientific insights have been debated since the dawn of AI. In particular, there is renewed interest in the role of AI in research and research policy as an enabler of new methods, processes, management and evaluation which is still relatively under-explored. This empirical paper explores interviews with leading scholars on the potential impact of AI on research practice and culture through deductive, thematic analysis to (...) |
|
The article examines the challenges involved in the process of developing artificial ethical agents. The process involves the creators or designing professionals, the procedures to develop an ethical agent and the artificial systems. There are two possibilities available to create artificial ethical agents: (a) programming ethical guidance in the artificial Intelligence (AI)-equipped machines and/or (b) allowing AI-equipped machines to learn ethical decision-making by observing humans. However, it is difficult to fulfil these possibilities due to the subjective nature of ethical decision-making. (...) No categories |
|
The article examines the challenges involved in the process of developing artificial ethical agents. The process involves the creators or designing professionals, the procedures to develop an ethical agent and the artificial systems. There are two possibilities available to create artificial ethical agents: (a) programming ethical guidance in the artificial Intelligence (AI)-equipped machines and/or (b) allowing AI-equipped machines to learn ethical decision-making by observing humans. However, it is difficult to fulfil these possibilities due to the subjective nature of ethical decision-making. (...) No categories |
|
Responsible innovation in artificial intelligence calls for public deliberation: well-informed “deep democratic” debate that involves actors from the public, private, and civil society sectors in joint efforts to critically address the goals and means of AI. Adopting such an approach constitutes a challenge, however, due to the opacity of AI and strong knowledge boundaries between experts and citizens. This undermines trust in AI and undercuts key conditions for deliberation. We approach this challenge as a problem of situating the knowledge of (...) |
|
Artificial intelligence systems have been widely applied to various contexts, including high-stake decision processes in healthcare, banking, and judicial systems. Some developed AI models fail to offer a fair output for specific minority groups, sparking comprehensive discussions about AI fairness. We argue that the development of AI systems is marked by a central paradox: the less participation one stakeholder has within the AI system’s life cycle, the more influence they have over the way the system will function. This means that (...) |
|
In this paper, we discuss several problems with current Big data practices which, we claim, seriously erode the role of informed consent as it pertains to the use of personal information. To illustrate these problems, we consider how the notion of informed consent has been understood and operationalised in the ethical regulation of biomedical research (and medical practices, more broadly) and compare this with current Big data practices. We do so by first discussing three types of problems that can impede (...) |
|
The increasing use of artificial intelligence by public actors has led to a push for more transparency. Previous research has conceptualized AI transparency as knowledge that empowers citizens and experts to make informed choices about the use and governance of AI. Conversely, in this paper, we critically examine if transparency-as-knowledge is an appropriate concept for a public realm where private interests intersect with democratic concerns. We conduct a practice-based design research study in which we prototype and evaluate a transparent smart (...) |
|
Recent advances in the capability of digital information technologies—particularly due to advances in artificial intelligence —have invigorated the debate on the ethical issues surrounding their use. However, this debate has often been dominated by ‘Western’ ethical perspectives, values and interests, to the exclusion of broader ethical and socio-cultural perspectives. This imbalance carries the risk that digital technologies produce ethical harms and lack social acceptance, when the ethical norms and values designed into these technologies collide with those of the communities in (...) |
|
Accountability is a cornerstone of the governance of artificial intelligence (AI). However, it is often defined too imprecisely because its multifaceted nature and the sociotechnical structure of AI systems imply a variety of values, practices, and measures to which accountability in AI can refer. We address this lack of clarity by defining accountability in terms of answerability, identifying three conditions of possibility (authority recognition, interrogation, and limitation of power), and an architecture of seven features (context, range, agent, forum, standards, process, (...) |
|
The modern abundance and prominence of data has led to the development of “data science” as a new field of enquiry, along with a body of epistemological reflections upon its foundations, methods, and consequences. This article provides a systematic analysis and critical review of significant open problems and debates in the epistemology of data science. We propose a partition of the epistemology of data science into the following five domains: (i) the constitution of data science; (ii) the kind of enquiry (...) |