Switch to: References

Add citations

You must login to add citations.
  1. A Monist Proposal: Against Integrative Pluralism About Protein Structure.Agnes Bolinska - 2022 - Erkenntnis 1 (4).
    Mitchell & Gronenborn propose that we account for the presence of multiple models of protein structure, each produced in different contexts, through the framework of integrative pluralism. I argue that two interpretations of this framework are available, neither of which captures the relationship between a model and the protein structure it represents or between multiple models of protein structure. Further, it inclines us toward concluding prematurely that models of protein structure are right in their contexts and makes extrapolation of findings (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Unity of Science.Tuomas E. Tahko - 2021 - Cambridge: Cambridge University Press.
    Unity of science was once a very popular idea among both philosophers and scientists. But it has fallen out of fashion, largely because of its association with reductionism and the challenge from multiple realisation. Pluralism and the disunity of science are the new norm, and higher-level natural kinds and special science laws are considered to have an important role in scientific practice. What kind of reductionism does multiple realisability challenge? What does it take to reduce one phenomenon to another? How (...)
  • Extending the Ladder of Stances: Comments on Chakravartty's Scientific Ontology.Matthew H. Slater - 2021 - Dialogue 60 (1):33-42.
    RÉSUMÉJe soulève des questions concernant l'approche volontariste défendue par Chakravartty à l’égard des positions : supposant que nous reconnaissons une hiérarchie des positions, la position volontariste peut être à la fois vraie et trompeuse en ce qui concerne la viabilité pratique de certains débats dans le domaine de la philosophie des sciences, en particulier le débat sur le réalisme scientifique ou sur la façon de «naturaliser» la métaphysique.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • A relational-constructionist account of protein macrostructure and function.Gil Santos, Gabriel Vallejos & Davide Vecchi - 2020 - Foundations of Chemistry 22 (3):363-382.
    One of the foundational problems of biochemistry concerns the conceptualisation of the relationship between the composition, structure and function of macromolecules like proteins. Part of the recent philosophical literature displays a reductionist bias, that is, the endorsement of a form of microstructuralism mirroring an out-dated biochemical conceptualisation. We shall argue that such microstructuralist approaches are ultimately committed to a potentialist form of micro-predeterminism whereby the macrostructure and function of proteins is accounted for solely in terms of the intrinsic properties and (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Reductionist methodology and the ambiguity of the categories of race and ethnicity in biomedical research: an exploratory study of recent evidence.Joanna Karolina Malinowska & Tomasz Żuradzki - 2022 - Medicine, Health Care and Philosophy (1):1-14.
    In this article, we analyse how researchers use the categories of race and ethnicity with reference to genetics and genomics. We show that there is still considerable conceptual “messiness” (despite the wide-ranging and popular debate on the subject) when it comes to the use of ethnoracial categories in genetics and genomics that among other things makes it difficult to properly compare and interpret research using ethnoracial categories, as well as draw conclusions from them. Finally, we briefly reconstruct some of the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Messy Chemical Kinds.Joyce C. Havstad - 2018 - British Journal for the Philosophy of Science 69 (3):719-743.
    Following Kripke and Putnam, the received view of chemical kinds has been a microstructuralist one. To be a microstructuralist about chemical kinds is to think that membership in said kinds is conferred by microstructural properties. Recently, the received microstructuralist view has been elaborated and defended, but it has also been attacked on the basis of complexities, both chemical and ontological. Here, I look at which complexities really challenge the microstructuralist view; at how the view itself might be made more complicated (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  • The many theories of mind: eliminativism and pluralism in context.Joe Gough - 2022 - Synthese 200 (4):1-22.
    In recent philosophy of science there has been much discussion of both pluralism, which embraces scientific terms with multiple meanings, and eliminativism, which rejects such terms. Some recent work focuses on the conditions that legitimize pluralism over eliminativism – the conditions under which such terms are acceptable. Often, this is understood as a matter of encouraging effective communication – the danger of these terms is thought to be equivocation, while the advantage is thought to be the fulfilment of ‘bridging roles’ (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Structure, function, and protein taxonomy.William Goodwin - 2011 - Biology and Philosophy 26 (4):533-545.
    This paper considers two recent arguments that structure should not be regarded as the fundamental individuating property of proteins. By clarifying both what it might mean for certain properties to play a fundamental role in a classification scheme and the extent to which structure plays such a role in protein classification, I argue that both arguments are unsound. Because of its robustness, its importance in laboratory practice, and its explanatory centrality, primary structure should be regarded as the fundamental distinguishing characteristic (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  • Where Do You Get Your Protein? Or: Biochemical Realization.Tuomas E. Tahko - 2020 - British Journal for the Philosophy of Science 71 (3):799-825.
    Biochemical kinds such as proteins pose interesting problems for philosophers of science, as they can be studied from the points of view of both biology and chemistry. The relationship between the biological functions of biochemical kinds and the microstructures that they are related to is the key question. This leads us to a more general discussion about ontological reductionism, microstructuralism, and multiple realization at the biology-chemistry interface. On the face of it, biochemical kinds seem to pose a challenge for ontological (...)
    Direct download (13 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • Biochemical functions.Francesca Bellazzi - forthcoming - British Journal for the Philosophy of Science.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Biochemical Kinds.Jordan Bartol - 2014 - British Journal for the Philosophy of Science (2):axu046.
    Chemical kinds (e.g. gold) are generally treated as having timelessly fixed identities. Biological kinds (e.g. goldfinches) are generally treated as evolved and/or evolving entities. So what kind of kind is a biochemical kind? This paper defends the thesis that biochemical molecules are clustered chemical kinds, some of which–namely, evolutionarily conserved units–are also biological kinds.On this thesis, a number of difficulties that have recently occupied philosophers concerned with proteins and kinds are shown to be resolved or dissolved.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Biochemical Kinds.Jordan Bartol - 2016 - British Journal for the Philosophy of Science 67 (2):531-551.
    Chemical kinds are generally treated as having timelessly fixed identities. Biological kinds are generally treated as evolved and/or evolving entities. So what kind of kind is a biochemical kind? This article defends the thesis that biochemical molecules are clustered chemical kinds, some of which—namely, evolutionarily conserved units—are also biological kinds. On this thesis, a number of difficulties that have recently occupied philosophers concerned with proteins and kinds are shown to be either resolved or dissolved. 1 Introduction2 Conflicting Intuitions about Kinds (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • ¿Es posible una ontología procesual de las entidades bioquímicas? Consideraciones a partir del caso de los receptores celulares y la señalización celular.Fiorela Alassia - 2022 - Estudios de Filosofía (Universidad de Antioquia) 65:153-175.
    Biological macromolecules, considered as the items of the biochemical domain, are typically conceived under the ontological category of substantial individuals. In this paper, I will argue that the philosophical framework of process ontology, according to which the living world is not populated by individuals but by a dynamic hierarchy of processes, is more adequate to account for the structure and functioning of macromolecules. In particular, I will analyze its application to the phenomenon of cell signaling and to one of its (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Correction to: A process ontology approach in biochemistry: the case of GPCRs and biosignaling.Fiorela Alassia - 2023 - Foundations of Chemistry 25 (1):189-206.
    According to process ontology in the philosophy of biology, the living world is better understood as processes rather than as substantial individuals. Within this perspective, an organism does not consist of a hierarchy of structures like a machine, but rather a dynamic hierarchy of processes, dynamically maintained and stabilized at different time scales. With this respect, two processual approaches on enzymes by Stein (Hyle Int J Philos Chem 10(4):5–22, 2004, Process Stud 34:62–80, 2005, Found Chem 8:3–29, 2006) and by Guttinger (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • A process ontology approach in biochemistry: the case of GPCRs and biosignaling.Fiorela Alassia - 2022 - Foundations of Chemistry 24 (3):405-422.
    According to process ontology in the philosophy of biology, the living world is better understood as processes rather than as substantial individuals. Within this perspective, an organism does not consist of a hierarchy of structures like a machine, but rather a dynamic hierarchy of processes, dynamically maintained and stabilized at different time scales. With this respect, two processual approaches on enzymes by Stein (Hyle Int J Philos Chem 10(4):5–22, 2004, Process Stud 34:62–80, 2005, Found Chem 8:3–29, 2006) and by Guttinger (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Natural Kinds.Zdenka Brzović - 2018 - Internet Encyclopedia of Philosophy.
    A large part of our exploration of the world consists in categorizing or classifying the objects and processes we encounter, both in scientific and everyday contexts. There are various, perhaps innumerable, ways to sort objects into different kinds or categories, but it is commonly assumed that, among the countless possible types of classifications, one group is privileged. Philosophy refers to such categories as natural kinds. Standard examples of such kinds include fundamental physical particles, chemical elements, and biological species. The term (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Natural kinds.Emma Tobin & Alexander Bird - 2009 - Stanford Encyclopedia of Philosophy.
    Direct download  
     
    Export citation  
     
    Bookmark   82 citations  
  • Eschewing Entities: Outlining a Biology Based Form of Structural Realism.Steven French - 2013 - In Vassilios Karakostas & Dennis Dieks (eds.), Epsa11 Perspectives and Foundational Problems in Philosophy of Science. Springer. pp. 371--381.
    Direct download  
     
    Export citation  
     
    Bookmark