Switch to: References

Add citations

You must login to add citations.
  1. Reverse mathematics: the playground of logic.Richard A. Shore - 2010 - Bulletin of Symbolic Logic 16 (3):378-402.
    This paper is essentially the author's Gödel Lecture at the ASL Logic Colloquium '09 in Sofia extended and supplemented by material from some other papers. After a brief description of traditional reverse mathematics, a computational approach to is presented. There are then discussions of some interactions between reverse mathematics and the major branches of mathematical logic in terms of the techniques they supply as well as theorems for analysis. The emphasis here is on ones that lie outside the usual main (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Menger’s theorem in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\Pi^11\tt{-CA}0}}$$\end{document}. [REVIEW]Paul Shafer - 2012 - Archive for Mathematical Logic 51 (3-4):407-423.
    We prove Menger’s theorem for countable graphs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\Pi^1_1\tt{-CA}_0}}$$\end{document}. Our proof in fact proves a stronger statement, which we call extended Menger’s theorem, that is equivalent to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\Pi^1_1\tt{-CA}_0}}$$\end{document} over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\tt{RCA}_0}}$$\end{document}.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Computing maximal chains.Alberto Marcone, Antonio Montalbán & Richard A. Shore - 2012 - Archive for Mathematical Logic 51 (5-6):651-660.
    In (Fund Math 60:175–186 1967), Wolk proved that every well partial order (wpo) has a maximal chain; that is a chain of maximal order type. (Note that all chains in a wpo are well-ordered.) We prove that such maximal chain cannot be found computably, not even hyperarithmetically: No hyperarithmetic set can compute maximal chains in all computable wpos. However, we prove that almost every set, in the sense of category, can compute maximal chains in all computable wpos. Wolk’s original result (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • The computational strength of matchings in countable graphs.Stephen Flood, Matthew Jura, Oscar Levin & Tyler Markkanen - 2022 - Annals of Pure and Applied Logic 173 (8):103133.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Ordinals and graph decompositions.Stephen Flood - 2017 - Annals of Pure and Applied Logic 168 (4):824-839.
  • The model-theoretic ordinal analysis of theories of predicative strength.Jeremy Avigad & Richard Sommer - 1999 - Journal of Symbolic Logic 64 (1):327-349.
    We use model-theoretic methods described in [3] to obtain ordinal analyses of a number of theories of first- and second-order arithmetic, whose proof-theoretic ordinals are less than or equal to Γ0.
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the relationship between ATR 0 and.Jeremy Avigad - 1996 - Journal of Symbolic Logic 61 (3):768-779.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  • Formalizing forcing arguments in subsystems of second-order arithmetic.Jeremy Avigad - 1996 - Annals of Pure and Applied Logic 82 (2):165-191.
    We show that certain model-theoretic forcing arguments involving subsystems of second-order arithmetic can be formalized in the base theory, thereby converting them to effective proof-theoretic arguments. We use this method to sharpen the conservation theorems of Harrington and Brown-Simpson, giving an effective proof that WKL+0 is conservative over RCA0 with no significant increase in the lengths of proofs.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   26 citations  
  • A model-theoretic approach to ordinal analysis.Jeremy Avigad & Richard Sommer - 1997 - Bulletin of Symbolic Logic 3 (1):17-52.
    We describe a model-theoretic approach to ordinal analysis via the finite combinatorial notion of an α-large set of natural numbers. In contrast to syntactic approaches that use cut elimination, this approach involves constructing finite sets of numbers with combinatorial properties that, in nonstandard instances, give rise to models of the theory being analyzed. This method is applied to obtain ordinal analyses of a number of interesting subsystems of first- and second-order arithmetic.
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • 2010 European Summer Meeting of the Association for Symbolic Logic. Logic Colloquium '10.Uri Abraham & Ted Slaman - 2011 - Bulletin of Symbolic Logic 17 (2):272-329.