Switch to: References

Add citations

You must login to add citations.
  1. Does a Computer Have an Arrow of Time?Owen J. E. Maroney - 2010 - Foundations of Physics 40 (2):205-238.
    Schulman (Entropy 7(4):221–233, 2005) has argued that Boltzmann’s intuition, that the psychological arrow of time is necessarily aligned with the thermodynamic arrow, is correct. Schulman gives an explicit physical mechanism for this connection, based on the brain being representable as a computer, together with certain thermodynamic properties of computational processes. Hawking (Physical Origins of Time Asymmetry, Cambridge University Press, Cambridge, 1994) presents similar, if briefer, arguments. The purpose of this paper is to critically examine the support for the link between (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • The use of the information-theoretic entropy in thermodynamics.James Ladyman, Stuart Presnell & Anthony J. Short - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (2):315-324.
    When considering controversial thermodynamic scenarios such as Maxwell's demon, it is often necessary to consider probabilistic mixtures of states. This raises the question of how, if at all, to assign entropy to them. The information-theoretic entropy is often used in such cases; however, no general proof of the soundness of doing so has been given, and indeed some arguments against doing so have been presented. We offer a general proof of the applicability of the information-theoretic entropy to probabilistic mixtures of (...)
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Compendium of the foundations of classical statistical physics.Jos Uffink - 2005 - In Jeremy Butterfield & John Earman (eds.), Handbook of the Philosophy of Physics. Elsevier.
    Roughly speaking, classical statistical physics is the branch of theoretical physics that aims to account for the thermal behaviour of macroscopic bodies in terms of a classical mechanical model of their microscopic constituents, with the help of probabilistic assumptions. In the last century and a half, a fair number of approaches have been developed to meet this aim. This study of their foundations assesses their coherence and analyzes the motivations for their basic assumptions, and the interpretations of their central concepts. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   98 citations