Switch to: References

Add citations

You must login to add citations.
  1. Some properties of r-maximal sets and Q 1,N -reducibility.R. Sh Omanadze - 2015 - Archive for Mathematical Logic 54 (7-8):941-959.
    We show that the c.e. Q1,N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Q_{1,N}}$$\end{document}-degrees are not an upper semilattice. We prove that if M is an r-maximal set, A is an arbitrary set and M≡Q1,NA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M \equiv{}_ {Q_{1,N}}A}$$\end{document}, then M≤mA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M\leq{}_{m} A}$$\end{document}. Also, if M1 and M2 are r-maximal sets, A and B are major subsets of M1 and M2, respectively, and M1\A≡Q1,NM2\B\documentclass[12pt]{minimal} \usepackage{amsmath} (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Some structural properties of quasi-degrees.Roland Sh Omanadze - 2018 - Logic Journal of the IGPL 26 (1):191-201.
  • Q1-degrees of c.e. sets.R. Sh Omanadze & Irakli O. Chitaia - 2012 - Archive for Mathematical Logic 51 (5-6):503-515.
    We show that the Q-degree of a hyperhypersimple set includes an infinite collection of Q1-degrees linearly ordered under \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\leq_{Q_1}}$$\end{document} with order type of the integers and consisting entirely of hyperhypersimple sets. Also, we prove that the c.e. Q1-degrees are not an upper semilattice. The main result of this paper is that the Q1-degree of a hemimaximal set contains only one c.e. 1-degree. Analogous results are valid for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • On the bounded quasi‐degrees of c.e. sets.Roland Sh Omanadze - 2013 - Mathematical Logic Quarterly 59 (3):238-246.
  • Degrees of convex dependence in recursively enumerable vector spaces.Thomas A. Nevins - 1993 - Annals of Pure and Applied Logic 60 (1):31-47.
    Let W be a recursively enumerable vector space over a recursive ordered field. We show the Turing equivalence of the following sets: the set of all tuples of vectors in W which are linearly dependent; the set of all tuples of vectors in W whose convex closures contain the zero vector; and the set of all pairs of tuples in W such that the convex closure of X intersects the convex closure of Y. We also form the analogous sets consisting (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Effectively and Noneffectively Nowhere Simple Sets.Valentina S. Harizanov - 1996 - Mathematical Logic Quarterly 42 (1):241-248.
    R. Shore proved that every recursively enumerable set can be split into two nowhere simple sets. Splitting theorems play an important role in recursion theory since they provide information about the lattice ϵ of all r. e. sets. Nowhere simple sets were further studied by D. Miller and J. Remmel, and we generalize some of their results. We characterize r. e. sets which can be split into two effectively nowhere simple sets, and r. e. sets which can be split into (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  • Friedberg splittings of recursively enumerable sets.Rod Downey & Michael Stob - 1993 - Annals of Pure and Applied Logic 59 (3):175-199.
    A splitting A1A2 = A of an r.e. set A is called a Friedberg splitting if for any r.e. set W with W — A not r.e., W — Ai≠0 for I = 1,2. In an earlier paper, the authors investigated Friedberg splittings of maximal sets and showed that they formed an orbit with very interesting degree-theoretical properties. In the present paper we continue our investigations, this time analyzing Friedberg splittings and in particular their orbits and degrees for various classes (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • A Note on Decompositions of Recursively Enumerable Subspaces.R. G. Downey - 1984 - Mathematical Logic Quarterly 30 (30):465-470.