Switch to: References

Add citations

You must login to add citations.
  1. The fundamentality of fields.Charles T. Sebens - 2022 - Synthese 200 (5):1-28.
    There is debate as to whether quantum field theory is, at bottom, a quantum theory of fields or particles. One can take a field approach to the theory, using wave functionals over field configurations, or a particle approach, using wave functions over particle configurations. This article argues for a field approach, presenting three advantages over a particle approach: particle wave functions are not available for photons, a classical field model of the electron gives a superior account of both spin and (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Eliminating Electron Self-repulsion.Charles T. Sebens - 2023 - Foundations of Physics 53 (4):1-15.
    Problems of self-interaction arise in both classical and quantum field theories. To understand how such problems are to be addressed in a quantum theory of the Dirac and electromagnetic fields (quantum electrodynamics), we can start by analyzing a classical theory of these fields. In such a classical field theory, the electron has a spread-out distribution of charge that avoids some of the problems of self-interaction facing point charge models. However, there remains the problem that the electron will experience self-repulsion. This (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the nature of quantum-chemical entities: the case of electron density.Jesus Alberto Jaimes Arriaga - 2022 - Foundations of Chemistry 25 (1):127-139.
    An Aristotelian philosophy of nature offers an alternative to reduction for the conception of the inter-theoretical relationships between molecular chemistry and quantum mechanics. A basic ingredient for such an approach is an ontology of fundamental causal powers, and this work aims to develop such an ontology by drawing on quantum-chemical entities, particularly, the electron density. This notion is central to the Quantum Theory of Atoms in Molecules, a theory of molecular structure developed by Richard F. W. Bader, which describes molecules (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark