Switch to: References

Add citations

You must login to add citations.
  1. Taking particle physics seriously: A critique of the algebraic approach to quantum field theory.David Wallace - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (2):116-125.
    I argue against the currently prevalent view that algebraic quantum field theory (AQFT) is the correct framework for philosophy of quantum field theory and that “conventional” quantum field theory (CQFT), of the sort used in mainstream particle physics, is not suitable for foundational study. In doing so, I defend that position that AQFT and CQFT should be understood as rival programs to resolve the mathematical and physical pathologies of renormalization theory, and that CQFT has succeeded in this task and AQFT (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   68 citations  
  • Quantum symmetry breaking and physical inequivalence: the case of ferromagnetism.Giovanni Valente - 2020 - Synthese 198 (9):8127-8148.
    This paper discusses an outstanding issue in philosophy of physics concerning the relation between quantum symmetries and the notion of physical equivalence. Specifically, it deals with a dilemma arising for quantum symmetry breaking that was posed by Baker, who claimed that if two ground states are connected by a symmetry, even when it is broken, they must be physically equivalent. However, I argue that the dilemma is just apparent. In fact, I object to Baker’s conclusion by showing that the two (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Cosmic hylomorphism: A powerist ontology of quantum mechanics.William M. R. Simpson - 2021 - European Journal for Philosophy of Science 11 (1):1-25.
    The primitive ontology approach to quantum mechanics seeks to account for quantum phenomena in terms of a distribution of matter in three-dimensional space and a law of nature that describes its temporal development. This approach to explaining quantum phenomena is compatible with either a Humean or powerist account of laws. In this paper, I offer a powerist ontology in which the law is specified by Bohmian mechanics for a global configuration of particles. Unlike in other powerist ontologies, however, this law (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Infinite idealizations in physics.Elay Shech - 2018 - Philosophy Compass 13 (9):e12514.
    In this essay, I provide an overview of the debate on infinite and essential idealizations in physics. I will first present two ostensible examples: phase transitions and the Aharonov– Bohm effect. Then, I will describe the literature on the topic as a debate between two positions: Essentialists claim that idealizations are essential or indispensable for scientific accounts of certain physical phenomena, while dispensabilists maintain that idealizations are dispensable from mature scientific theory. I will also identify some attempts at finding a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  • Idealizations, essential self-adjointness, and minimal model explanation in the Aharonov–Bohm effect.Shech Elay - 2018 - Synthese 195 (11):4839-4863.
    Two approaches to understanding the idealizations that arise in the Aharonov–Bohm effect are presented. It is argued that a common topological approach, which takes the non-simply connected electron configuration space to be an essential element in the explanation and understanding of the effect, is flawed. An alternative approach is outlined. Consequently, it is shown that the existence and uniqueness of self-adjoint extensions of symmetric operators in quantum mechanics have important implications for philosophical issues. Also, the alleged indispensable explanatory role of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Philosophical Aspects of Quantum Field Theory: II.Laura Ruetsche - 2012 - Philosophy Compass 7 (8):571-584.
    According to a regnant criterion of physical equivalence for quantum theories, a quantum field theory (QFT) typically admits continuously many physically inequivalent realizations. This, the second of a two-part introduction to topics in the philosophy of QFT, continues the investigation of this alarming circumstance. It begins with a brief catalog of quantum field theoretic examples of this non-uniqueness, then presents the basics of the algebraic approach to quantum theories, which discloses a structure common even to ‘physically inequivalent’ realizations of a (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Johnny’s So Long at the Ferromagnet.Laura Ruetsche - 2006 - Philosophy of Science 73 (5):473-486.
    Starting from the standard quantum formalism for a single spin 1/2 system (e.g., an electron), this essay develops a model rich enough not only to afford an explication of symmetry breaking but also to frame questions about how to circumscribe physical possibility on behalf of theories that countenance symmetry breaking.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  • Lawrence P. Horwitz: Relativistic Quantum Mechanics: Springer, Dordrecht, 2015.Donald Reed - 2017 - Foundations of Physics 47 (11):1498-1502.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Dirac's Prediction of the Positron: A Case Study for the Current Realism Debate.Thomas Pashby - 2012 - Perspectives on Science 20 (4):440-475.
    Much debate has ensued regarding the challenge to scientific realism provided by consideration of certain problematic episodes of theory change in the history of science. This paper contends that there is an interesting case which has been overlooked in this debate, namely the prediction of the positron by Dirac from his ‘hole’ theory, and its subsequent replacement by a theory which failed to contain a central, and essential, theoretical posit: the ‘Dirac sea’ of negative energy electrons. Accounting for this case (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • The Limits of Physical Equivalence in Algebraic Quantum Field Theory.Tracy Lupher - 2016 - British Journal for the Philosophy of Science 69 (2):553-576.
    Some physicists and philosophers argue that unitarily inequivalent representations in quantum field theory are mathematical surplus structure. Support for that view, sometimes called ‘algebraic imperialism’, relies on Fell’s theorem and its deployment in the algebraic approach to QFT. The algebraic imperialist uses Fell’s theorem to argue that UIRs are ‘physically equivalent’ to each other. The mathematical, conceptual, and dynamical aspects of Fell’s theorem will be examined. Its use as a criterion for physical equivalence is examined in detail and it is (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Dispositionality and Symmetry Structures.Vassilis Livanios - 2018 - Metaphysica 19 (2):201-217.
    A number of metaphysicians and philosophers of science have raised the issue of themodalityof the fundamental structures of the world. Although the debate so far has been largely focused on the (alleged) inherent causal character of fundamental structures, one aspect of it has naturally taken its place as part of the dispositional/categorical debate. In this paper, I focus on the latter in the case of the fundamentalsymmetrystructures. After putting forward the necessary metaphysical presuppositions for the debate to make sense, I (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Explaining quantum spontaneous symmetry breaking.Chuang Liu & Gérard G. Emch - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (1):137-163.
    Two alternative accounts of quantum spontaneous symmetry breaking (SSB) are compared and one of them, the decompositional account in the algebraic approach, is argued to be superior for understanding quantum SSB. Two exactly solvable models are given as applications of our account -- the Weiss-Heisenberg model for ferromagnetism and the BCS model for superconductivity. Finally, the decompositional account is shown to be more conducive to the causal explanation of quantum SSB.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   25 citations  
  • Why conceptual rigour matters to philosophy: On the ontological significance of algebraic quantum field theory. [REVIEW]Meinard Kuhlmann - 2010 - Foundations of Physics 40 (9-10):1625-1637.
    I argue that algebraic quantum field theory (AQFT) permits an undisturbed view of the right ontology for fundamental physics, whereas standard (or Lagrangian) QFT offers different mutually incompatible ontologies.My claim does not depend on the mathematical inconsistency of standard QFT but on the fact that AQFT has the same concerns as ontology, namely categorical parsimony and a clearly structured hierarchy of entities.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • The Coalescence Approach to Inequivalent Representation: Pre-QM ∞ Parallels.Caspar Jacobs - 2023 - British Journal for the Philosophy of Science 74 (4):1069-1090.
    Ruetsche ([2011]) argues that the occurrence of unitarily inequivalent representations in quantum theories with infinitely many degrees of freedom poses a novel interpretational problem. According to Ruetsche, such theories compel us to reject the so-called ideal of pristine interpretation; she puts forward the ‘coalescence approach’ as an alternative. In this paper I offer a novel defence of the coalescence approach. The defence rests on the claim that the ideal of pristine interpretation already fails before one considers the peculiarities of QM∞: (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Spontaneous Symmertry Breaking in Finite Systems.James D. Fraser - 2016 - Philosophy of Science 83 (4):585-605.
    The orthodox characterization of spontaneous symmetry breaking in statistical mechanics appeals to novel properties of systems with infinite degrees of freedom, namely, the existence of multiple equilibrium states. This raises the same puzzles about the status of the thermodynamic limit fueling recent debates about phase transitions. I argue that there are prospects of explaining the success of the standard approach to SSB in terms of the properties of large finite systems. Consequently, despite initial appearances, the need to account for SSB (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Quantum field theory: Underdetermination, inconsistency, and idealization.Doreen Fraser - 2009 - Philosophy of Science 76 (4):536-567.
    Quantum field theory (QFT) presents a genuine example of the underdetermination of theory by empirical evidence. There are variants of QFT—for example, the standard textbook formulation and the rigorous axiomatic formulation—that are empirically indistinguishable yet support different interpretations. This case is of particular interest to philosophers of physics because, before the philosophical work of interpreting QFT can proceed, the question of which variant should be subject to interpretation must be settled. New arguments are offered for basing the interpretation of QFT (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   47 citations  
  • How to take particle physics seriously: A further defence of axiomatic quantum field theory.Doreen Fraser - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (2):126-135.
    Further arguments are offered in defence of the position that the variant of quantum field theory (QFT) that should be subject to interpretation and foundational analysis is axiomatic quantum field theory. I argue that the successful application of renormalization group (RG) methods within alternative formulations of QFT illuminates the empirical content of QFT, but not the theoretical content. RG methods corroborate the point of view that QFT is a case of the underdetermination of theory by empirical evidence. I also urge (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   49 citations  
  • Unitary inequivalence in classical systems.Benjamin Feintzeig - 2016 - Synthese 193 (9).
    Ruetsche argues that a problem of unitarily inequivalent representations arises in quantum theories with infinitely many degrees of freedom. I provide an algebraic formulation of classical field theories and show that unitarily inequivalent representations arise there as well. I argue that the classical case helps us rule out one possible response to the problem of unitarily inequivalent representations called Hilbert Space Conservatism.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • Toward an Understanding of Parochial Observables.Benjamin Feintzeig - 2016 - British Journal for the Philosophy of Science:axw010.
    Ruetsche claims that an abstract C*-algebra of observables will not contain all of the physically significant observables for a quantum system with infinitely many degrees of freedom. This would signal that in addition to the abstract algebra, one must use Hilbert space representations for some purposes. I argue to the contrary that there is a way to recover all of the physically significant observables by purely algebraic methods. 1 Introduction2 Preliminaries3 Three Extremist Interpretations3.1 Algebraic imperialism3.2 Hilbert space conservatism3.3 Universalism4 Parochial (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  • Toward an Understanding of Parochial Observables.Benjamin Feintzeig - 2018 - British Journal for the Philosophy of Science 69 (1):161-191.
    ABSTRACT Ruetsche claims that an abstract C*-algebra of observables will not contain all of the physically significant observables for a quantum system with infinitely many degrees of freedom. This would signal that in addition to the abstract algebra, one must use Hilbert space representations for some purposes. I argue to the contrary that there is a way to recover all of the physically significant observables by purely algebraic methods. 1Introduction 2Preliminaries 3Three Extremist Interpretations 3.1Algebraic imperialism 3.2Hilbert space conservatism 3.3Universalism 4Parochial (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • Reductive Explanation and the Construction of Quantum Theories.Benjamin H. Feintzeig - 2022 - British Journal for the Philosophy of Science 73 (2):457-486.
    I argue that philosophical issues concerning reductive explanations help constrain the construction of quantum theories with appropriate state spaces. I illustrate this general proposal with two examples of restricting attention to physical states in quantum theories: regular states and symmetry-invariant states. 1Introduction2Background2.1 Physical states2.2 Reductive explanations3The Proposed ‘Correspondence Principle’4Example: Regularity5Example: Symmetry-Invariance6Conclusion: Heuristics and Discovery.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Choice of Algebra for Quantization.Benjamin H. Feintzeig - 2018 - Philosophy of Science 85 (1):102-125.
    In this article, I examine the relationship between physical quantities and physical states in quantum theories. I argue against the claim made by Arageorgis that the approach to interpreting quantum theories known as Algebraic Imperialism allows for “too many states.” I prove a result establishing that the Algebraic Imperialist has very general resources that she can employ to change her abstract algebra of quantities in order to rule out unphysical states.
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • On Theory Construction in Physics: Continuity from Classical to Quantum.Benjamin H. Feintzeig - 2017 - Erkenntnis 82 (6):1195-1210.
    It is well known that the process of quantization—constructing a quantum theory out of a classical theory—is not in general a uniquely determined procedure. There are many inequivalent methods that lead to different choices for what to use as our quantum theory. In this paper, I show that by requiring a condition of continuity between classical and quantum physics, we constrain and inform the quantum theories that we end up with.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • Deduction and definability in infinite statistical systems.Benjamin H. Feintzeig - 2017 - Synthese 196 (5):1-31.
    Classical accounts of intertheoretic reduction involve two pieces: first, the new terms of the higher-level theory must be definable from the terms of the lower-level theory, and second, the claims of the higher-level theory must be deducible from the lower-level theory along with these definitions. The status of each of these pieces becomes controversial when the alleged reduction involves an infinite limit, as in statistical mechanics. Can one define features of or deduce the behavior of an infinite idealized system from (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Deduction and definability in infinite statistical systems.Benjamin H. Feintzeig - 2017 - Synthese 196 (5):1831-1861.
    Classical accounts of intertheoretic reduction involve two pieces: first, the new terms of the higher-level theory must be definable from the terms of the lower-level theory, and second, the claims of the higher-level theory must be deducible from the lower-level theory along with these definitions. The status of each of these pieces becomes controversial when the alleged reduction involves an infinite limit, as in statistical mechanics. Can one define features of or deduce the behavior of an infinite idealized system from (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Curie’s Principle and spontaneous symmetry breaking.John Earman - 2004 - International Studies in the Philosophy of Science 18 (2 & 3):173 – 198.
    In 1894 Pierre Curie announced what has come to be known as Curie's Principle: the asymmetry of effects must be found in their causes. In the same publication Curie discussed a key feature of what later came to be known as spontaneous symmetry breaking: the phenomena generally do not exhibit the symmetries of the laws that govern them. Philosophers have long been interested in the meaning and status of Curie's Principle. Only comparatively recently have they begun to delve into the (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   65 citations  
  • Broken Symmetry and Spacetime.David John Baker - 2011 - Philosophy of Science 78 (1):128-148.
    The phenomenon of broken spacetime symmetry in the quantum theory of infinite systems forces us to adopt an unorthodox ontology. We must abandon the standard conception of the physical meaning of these symmetries, or else deny the attractive “liberal” notion of which physical quantities are significant. A third option, more attractive but less well understood, is to abandon the existing (Halvorson-Clifton) notion of intertranslatability for quantum theories.
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  • Objectivity Sans Intelligibility. Hermann Weyl's Symbolic Constructivism.Iulian D. Toader - 2011 - Dissertation, University of Notre Dame
    A new form of skepticism is described, which holds that objectivity and understanding are incompossible ideals of modern science. This is attributed to Weyl, hence its name: Weylean skepticism. Two general defeat strategies are then proposed, one of which is rejected.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Structural Realism and the Problem of Inequivalent Representations in Quantum Field Theory.Iulian D. Toader - manuscript
    This unpublished paper, written in 2005 in the PhD philosophy program at Notre Dame, argues that algebraic structural realism faces a difficulty raised by the existence of inequivalent representations in quantum field theory.
    Direct download  
     
    Export citation  
     
    Bookmark  
  • Spontaneous Symmetry Breaking in Finite Quantum Systems: a decoherent-histories approach.David Wallace - unknown
    Spontaneous symmetry breaking in quantum systems, such as ferromagnets, is normally described as degeneracy of the ground state; however, it is well established that this degeneracy only occurs in spatially infinite systems, and even better established that ferromagnets are not spatially infinite. I review this well-known paradox, and consider a popular solution where the symmetry is explicitly broken by some external field which goes to zero in the infinite-volume limit; although this is formally satisfactory, I argue that it must be (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Status of Scaling Limits as Approximations in Quantum Theories.Benjamin Feintzeig - unknown
    This paper attempts to make sense of a notion of ``approximation on certain scales'' in physical theories. I use this notion to understand the classical limit of ordinary quantum mechanics as a kind of scaling limit, showing that the mathematical tools of strict quantization allow one to make the notion of approximation precise. I then compare this example with the scaling limits involved in renormalization procedures for effective field theories. I argue that one does not yet have the mathematical tools (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark