Switch to: References

Add citations

You must login to add citations.
  1. On the Behavior of True and False.Stefan Wintein - 2012 - Minds and Machines 22 (1):1-24.
    Uzquiano (Analysis 70:39–44, 2010 ) showed that the Hardest Logic Puzzle Ever ( HLPE ) [in its amended form due to Rabern and Rabern (Analysis 68:105–112, 2008 )] has a solution in only two questions. Uzquiano concludes his paper by noting that his solution strategy naturally suggests a harder variation of the puzzle which, as he remarks, he does not know how to solve in two questions. Wheeler and Barahona (J Philos Logic, to appear, 2011 ) formulated a three question (...)
    Direct download (6 more)  
    Export citation  
    Bookmark   1 citation  
  • Does Every Proposition Have a Unique Contradictory?M. J. Cresswell - 2008 - Analysis 68 (2):112-114.
  • A Simple Solution to the Hardest Logic Puzzle Ever.Brian Rabern & Landon Rabern - 2008 - Analysis 68 (2):105-112.
    We present the simplest solution ever to 'the hardest logic puzzle ever'. We then modify the puzzle to make it even harder and give a simple solution to the modified puzzle. The final sections investigate exploding god-heads and a two-question solution to the original puzzle.
    Direct download (12 more)  
    Export citation  
    Bookmark   6 citations  
  • Why the Hardest Logic Puzzle Ever Cannot Be Solved in Less Than Three Questions.Gregory Wheeler & Pedro Barahona - 2012 - Journal of Philosophical Logic 41 (2):493-503.
    Rabern and Rabern (Analysis 68:105–112 2 ) and Uzquiano (Analysis 70:39–44 4 ) have each presented increasingly harder versions of ‘the hardest logic puzzle ever’ (Boolos The Harvard Review of Philosophy 6:62–65 1 ), and each has provided a two-question solution to his predecessor’s puzzle. But Uzquiano’s puzzle is different from the original and different from Rabern and Rabern’s in at least one important respect: it cannot be solved in less than three questions. In this paper we solve Uzquiano’s puzzle (...)
    Direct download (7 more)  
    Export citation  
    Bookmark   2 citations  
  • A Framework for Riddles About Truth That Do Not Involve Self-Reference.Stefan Wintein - 2011 - Studia Logica 98 (3):445-482.
    In this paper, we present a framework in which we analyze three riddles about truth that are all (originally) due to Smullyan. We start with the riddle of the yes-no brothers and then the somewhat more complicated riddle of the da-ja brothers is studied. Finally, we study the Hardest Logic Puzzle Ever (HLPE). We present the respective riddles as sets of sentences of quotational languages , which are interpreted by sentence-structures. Using a revision-process the consistency of these sets is established. (...)
    Direct download (5 more)  
    Export citation