Switch to: References

Citations of:

Decisions, Decisions, Decisions: Can Savage Salvage Everettian Probability?

In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford University Press (2010)

Add citations

You must login to add citations.
  1. Everettian quantum mechanics without branching time.Alastair Wilson - 2012 - Synthese 188 (1):67-84.
    In this paper I assess the prospects for combining contemporary Everettian quantum mechanics (EQM) with branching-time semantics in the tradition of Kripke, Prior, Thomason and Belnap. I begin by outlining the salient features of ‘decoherence-based’ EQM, and of the ‘consistent histories’ formalism that is particularly apt for conceptual discussions in EQM. This formalism permits of both ‘branching worlds’ and ‘parallel worlds’ interpretations; the metaphysics of EQM is in this sense underdetermined by the physics. A prominent argument due to Lewis (On (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  • Centering the Everett Interpretation.Isaac Wilhelm - 2022 - Philosophical Quarterly 72 (4):1019-1039.
    I propose an account of probability in the Everett interpretation of quantum mechanics. According to the account, probabilities are objective chances of centered propositions. As I show, the account solves a number of problems concerning the role of probability in the Everett interpretation. It also challenges an implicit assumption, concerning the aim and scope of fundamental physical theories, that is made throughout the philosophy of physics literature.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Objective probability and the mind-body relation.Paul Tappenden - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 57:8-16.
    Objective probability in quantum mechanics is often thought to involve a stochastic process whereby an actual future is selected from a range of possibilities. Everett’s seminal idea is that all possible definite futures on the pointer basis exist as components of a macroscopic linear superposition. I demonstrate that these two conceptions of what is involved in quantum processes are linked via two alternative interpretations of the mind-body relation. This leads to a fission, rather than divergence, interpretation of Everettian theory and (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Expectancy and rational action prior to personal fission.Paul Tappenden - 2011 - Philosophical Studies 153 (2):299 - 306.
    Some analyses of personal fission suggest that an informed subject should expect to have a distinct experience of each outcome simultaneously. Is rational provision for the future possible in such unfamiliar circumstances? I argue that, with some qualification, the subject can reasonably act as if faced with alternative possible outcomes with precise probabilities rather than multiple actual outcomes.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Analysis of Wallace’s Proof of the Born Rule in Everettian Quantum Mechanics: Formal Aspects.André L. G. Mandolesi - 2018 - Foundations of Physics 48 (7):751-782.
    To solve the probability problem of the Many Worlds Interpretation of Quantum Mechanics, D. Wallace has presented a formal proof of the Born rule via decision theory, as proposed by D. Deutsch. The idea is to get subjective probabilities from rational decisions related to quantum measurements, showing the non-probabilistic parts of the quantum formalism, plus some rational constraints, ensure the squared modulus of quantum amplitudes play the role of such probabilities. We provide a new presentation of Wallace’s proof, reorganized to (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Analysis of Wallace’s Proof of the Born Rule in Everettian Quantum Mechanics II: Concepts and Axioms.André L. G. Mandolesi - 2019 - Foundations of Physics 49 (1):24-52.
    Having analyzed the formal aspects of Wallace’s proof of the Born rule, we now discuss the concepts and axioms upon which it is built. Justification for most axioms is shown to be problematic, and at times contradictory. Some of the problems are caused by ambiguities in the concepts used. We conclude the axioms are not reasonable enough to be taken as mandates of rationality in Everettian Quantum Mechanics. This invalidates the interpretation of Wallace’s result as meaning it would be rational (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Powers ontology and the quantum revolution.Robert C. Koons - 2020 - European Journal for Philosophy of Science 11 (1):1-28.
    An Aristotelian philosophy of nature rejects the modern prejudice in favor of the microscopic, a rejection that is crucial if we are to penetrate the mysteries of the quantum world. I defend an Aristotelian model by drawing on both quantum chemistry and recent work on the measurement problem. By building on the work of Hans Primas, using the distinction between quantum and classical properties that emerges in quantum chemistry at the thermodynamic or continuum limit, I develop a new version of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Many worlds: decoherent or incoherent?Karim P. Y. Thébault & Richard Dawid - 2015 - Synthese 192 (5):1559-1580.
    We claim that, as it stands, the Deutsch–Wallace–Everett approach to quantum theory is conceptually incoherent. This charge is based upon the approach’s reliance upon decoherence arguments that conflict with its own fundamental precepts regarding probabilistic reasoning in two respects. This conceptual conflict obtains even if the decoherence arguments deployed are aimed merely towards the establishment of certain ‘emergent’ or ‘robust’ structures within the wave function: To be relevant to physical science notions such as robustness must be empirically grounded, and, on (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  • Quantum mechanics, emergence, and decisions.Guido Bacciagaluppi - 2020 - Mind and Society 19 (2):299-305.
    I summarise some aspects of the relation between quantum mechanics and the macroscopic world in the context of the multiverse or Everett theory. I do so with particular reference to the results of the theory of decoherence, the notions of reduction and emergence, and agents' decisions.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Everett’s Missing Postulate and the Born Rule.Per Arve - 2020 - Foundations of Physics 50 (7):665-692.
    Everett’s Relative State Interpretation has gained increasing interest due to the progress of understanding the role of decoherence. In order to fulfill its promise as a realistic description of the physical world, two postulates are formulated. In short they are for a system with continuous coordinates \, discrete variable j, and state \\), the density \=|\psi _j|^2\) gives the distribution of the location of the system with the respect to the variables \ and j; an equation of motion for the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Probability in Two Deterministic Universes.Mateus Araújo - 2019 - Foundations of Physics 49 (3):202-231.
    How can probabilities make sense in a deterministic many-worlds theory? We address two facets of this problem: why should rational agents assign subjective probabilities to branching events, and why should branching events happen with relative frequencies matching their objective probabilities. To address the first question, we generalise the Deutsch–Wallace theorem to a wide class of many-world theories, and show that the subjective probabilities are given by a norm that depends on the dynamics of the theory: the 2-norm in the usual (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Pluralists about Pluralism? Versions of Explanatory Pluralism in Psychiatry.Jeroen Van Bouwel - 2014 - In M. C. Galavotti, D. Dieks, W. J. Gonzalez, S. Hartmann, Th Uebel & M. Weber (eds.), New Directions in Philosophy of Science (The Philosophy of Science in a European Perspective Series). Springer. pp. 105-119.
    In this contribution, I comment on Raffaella Campaner’s defense of explanatory pluralism in psychiatry (in this volume). In her paper, Campaner focuses primarily on explanatory pluralism in contrast to explanatory reductionism. Furthermore, she distinguishes between pluralists who consider pluralism to be a temporary state on the one hand and pluralists who consider it to be a persisting state on the other hand. I suggest that it would be helpful to distinguish more than those two versions of pluralism – different understandings (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Many-worlds interpretation of quantum mechanics.Lev Vaidman - 2008 - Stanford Encyclopedia of Philosophy.
    The Many-Worlds Interpretation (MWI) is an approach to quantum mechanics according to which, in addition to the world we are aware of directly, there are many other similar worlds which exist in parallel at the same space and time. The existence of the other worlds makes it possible to remove randomness and action at a distance from quantum theory and thus from all physics.
    Direct download  
     
    Export citation  
     
    Bookmark   74 citations  
  • A Critic Looks at QBism.Guido Bacciagaluppi - unknown
    This paper comments on a paper by Chris Fuchs. Both papers are to appear in "New Directions in the Philosophy of Science", eds. M. C. Galavotti, S. Hartmann, M. Weber, W. Gonzalez, D. Dieks and T. Uebel. This paper presents some mild criticisms of Fuchs's views, some based on the EPR and Wigner's friend scenarios, and some based on the quantum theory of measurement. A few alternative suggestions for implementing a subjectivist interpretation of probability in quantum mechanics conclude the paper.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations