Switch to: References

Add citations

You must login to add citations.
  1. General Covariance, Diffeomorphism Invariance, and Background Independence in 5 Dimensions.Antonio Vassallo - 2015 - In Tomasz Bigaj & Christian Wüthrich (eds.), Metaphysics in Contemporary Physics. Boston: Brill | Rodopi.
    The paper considers the "GR-desideratum", that is, the way general relativity implements general covariance, diffeomorphism invariance, and background independence. Two cases are discussed where 5-dimensional generalizations of general relativity run into interpretational troubles when the GR-desideratum is forced upon them. It is shown how the conceptual problems dissolve when such a desideratum is relaxed. In the end, it is suggested that a similar strategy might mitigate some major issues such as the problem of time or the embedding of quantum non-locality (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • Background Independence, Diffeomorphism Invariance, and the Meaning of Coordinates.Oliver Pooley - 2016 - In Dennis Lehmkuhl, Gregor Schiemann & Erhard Scholz (eds.), Towards a Theory of Spacetime Theories. New York, NY: Birkhauser.
    Diffeomorphism invariance is sometimes taken to be a criterion of background independence. This claim is commonly accompanied by a second, that the genuine physical magnitudes (the ``observables'') of background-independent theories and those of background-dependent (non-diffeomorphism-invariant) theories are essentially different in nature. I argue against both claims. Background-dependent theories can be formulated in a diffeomorphism-invariant manner. This suggests that the nature of the physical magnitudes of relevantly analogous theories (one background free, the other background dependent) is essentially the same. The temptation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  • A Metaphysical Reflection on the Notion of Background in Modern Spacetime Physics.Antonio Vassallo - 2016 - In Laura Felline (ed.), New Developments in Logic and Philosophy of Science. pp. 349-365.
    The paper presents a metaphysical characterization of spatiotemporal backgrounds from a realist perspective. The conceptual analysis is based on a heuristic sketch that encompasses the common formal traits of the major spacetime theories, such as Newtonian mechanics and general relativity. It is shown how this framework can be interpreted in a fully realist fashion, and what is the role of background structures in such a picture. In the end it is argued that, although backgrounds are a source of metaphysical discomfort, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • What represents space-time? And what follows for substantivalism vs. relationalism and gravitational energy?J. Brian Pitts - 2022 - In Antonio Vassallo (ed.), The Foundations of Spacetime Physics: Philosophical Perspectives. New York, NY: Routledge.
    The questions of what represents space-time in GR, the status of gravitational energy, the substantivalist-relationalist issue, and the exceptional status of gravity are interrelated. If space-time has energy-momentum, then space-time is substantival. Two extant ways to avoid the substantivalist conclusion deny that the energy-bearing metric is part of space-time or deny that gravitational energy exists. Feynman linked doubts about gravitational energy to GR-exceptionalism, as do Curiel and Duerr; particle physics egalitarianism encourages realism about gravitational energy. In that spirit, this essay (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Raum with a View.Neil Dewar & Joshua Eisenthal - 2020 - In Claus Beisbart, Tilman Sauer & Christian Wüthrich (eds.), Thinking About Space and Time: 100 Years of Applying and Interpreting General Relativity. Cham: Birkhäuser. pp. 111-132.
    A central issue in the philosophical debates over general relativity concerns the status of the metric field: should it be regarded as part of the background arena in which physical fields evolve, or as a physical field itself? In this paper, we approach this debate through its relationship to the so-called "Problem of Space": the problem of determining which abstract, mathematical geometries are candidate descriptions of physical space. In particular, we explore the way that Hermann Weyl tackled the Problem of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Can Bohmian mechanics be made background independent?Antonio Vassallo - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):242-250.
    The paper presents an inquiry into the question regarding the compatibility of Bohmian mechanics, intended as a non-local theory of moving point-like particles, with background independence. This issue is worth being investigated because, if the Bohmian framework has to be of some help in developing new physics, it has to be compatible with the most well-established traits of modern physics, background independence being one of such traits. The paper highlights the fact that the notion of background independence in the context (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Background Independence: Lessons for Further Decades of Dispute.Trevor Teitel - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 65:41-54.
    Background independence begins life as an informal property that a physical theory might have, often glossed as 'doesn't posit a fixed spacetime background'. Interest in trying to offer a precise account of background independence has been sparked by the pronouncements of several theorists working on quantum gravity that background independence embodies in some sense an essential discovery of the General Theory of Relativity, and a feature we should strive to carry forward to future physical theories. This paper has two goals. (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the Explanation of Inertia.Adán Sus - 2014 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 45 (2):293-315.
    In General Relativity (GR), it has been claimed that inertia receives a dynamical explanation. This is in contrast to the situation in other theories, such as Special Relativity, because the geodesic principle of GR can be derived from Einstein’s field equations. The claim can be challenged in different ways, all of which question whether the status of inertia in GR is physically different from its status in previous spacetime theories. In this paper I state the original argument for the claim (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  • There Is No Conspiracy of Inertia.Ryan Samaroo - 2018 - British Journal for the Philosophy of Science 69 (4):957-982.
    I examine two claims that arise in Brown’s account of inertial motion. Brown claims there is something objectionable about the way in which the motions of free particles in Newtonian theory and special relativity are coordinated. Brown also claims that since a geodesic principle can be derived in Einsteinian gravitation, the objectionable feature is explained away. I argue that there is nothing objectionable about inertia and that while the theorems that motivate Brown’s second claim can be said to figure in (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • On Identifying Background-Structure in Classical Field Theories.Ryan Samaroo - 2011 - Philosophy of Science 78 (5):1070-1081.
    I examine a property of theories called "background-independence" that Einsteinian gravitation is thought to exemplify. This concept has figured in the work of Rovelli (2001, 2004), Smolin (2006), Giulini (2007), and Belot (2011), among others. I propose and evaluate a few candidates for background-independence, and I show that there is something chimaerical about the concept. I argue, however, that there is a proposal that clarifies the feature of Einsteinian gravitation that motivates the concept.
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark  
  • Why the big Bang singularity does not help the Kal M cosmological argument for theism.J. Brian Pitts - 2008 - British Journal for the Philosophy of Science 59 (4):675-708.
    The cosmic singularity provides negligible evidence for creation in the finite past, and hence theism. A physical theory might have no metric or multiple metrics, so a ‘beginning’ must involve a first moment, not just finite age. Whether one dismisses singularities or takes them seriously, physics licenses no first moment. The analogy between the Big Bang and stellar gravitational collapse indicates that a Creator is required in the first case only if a Destroyer is needed in the second. The need (...)
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  • Space–time philosophy reconstructed via massive Nordström scalar gravities? Laws vs. geometry, conventionality, and underdetermination.J. Brian Pitts - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:73-92.
    What if gravity satisfied the Klein-Gordon equation? Both particle physics from the 1920s-30s and the 1890s Neumann-Seeliger modification of Newtonian gravity with exponential decay suggest considering a "graviton mass term" for gravity, which is _algebraic_ in the potential. Unlike Nordström's "massless" theory, massive scalar gravity is strictly special relativistic in the sense of being invariant under the Poincaré group but not the 15-parameter Bateman-Cunningham conformal group. It therefore exhibits the whole of Minkowski space-time structure, albeit only indirectly concerning volumes. Massive (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  • Einstein׳s Equations for Spin 2 Mass 0 from Noether׳s Converse Hilbertian Assertion.J. Brian Pitts - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 56:60-69.
    An overlap between the general relativist and particle physicist views of Einstein gravity is uncovered. Noether's 1918 paper developed Hilbert's and Klein's reflections on the conservation laws. Energy-momentum is just a term proportional to the field equations and a "curl" term with identically zero divergence. Noether proved a \emph{converse} "Hilbertian assertion": such "improper" conservation laws imply a generally covariant action. Later and independently, particle physicists derived the nonlinear Einstein equations assuming the absence of negative-energy degrees of freedom for stability, along (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • Change in Hamiltonian general relativity from the lack of a time-like Killing vector field.J. Brian Pitts - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 47:68-89.
    In General Relativity in Hamiltonian form, change has seemed to be missing, defined only asymptotically, or otherwise obscured at best, because the Hamiltonian is a sum of first-class constraints and a boundary term and thus supposedly generates gauge transformations. Attention to the gauge generator G of Rosenfeld, Anderson, Bergmann, Castellani et al., a specially _tuned sum_ of first-class constraints, facilitates seeing that a solitary first-class constraint in fact generates not a gauge transformation, but a bad physical change in electromagnetism or (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  • The strong arm of the law: a unified account of necessary and contingent laws of nature.Salim Hirèche, Niels Linnemann, Robert Michels & Lisa Vogt - 2021 - Synthese 199 (3-4):10211-10252.
    A common feature of all standard theories of the laws of nature is that they are "absolutist": They take laws to be either all metaphysically necessary or all contingent. Science, however, gives us reason to think that there are laws of both kinds, suggesting that standard theories should make way for "non-absolutist" alternatives: theories which accommodate laws of both modal statuses. In this paper, we set out three explanatory challenges for any candidate non-absolutist theory and discuss the prospects of the (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Against ‘functional gravitational energy’: a critical note on functionalism, selective realism, and geometric objects and gravitational energy.Patrick M. Duerr - 2019 - Synthese 199 (S2):299-333.
    The present paper revisits the debate between realists about gravitational energy in GR and anti-realists/eliminativists. I re-assess the arguments underpinning Hoefer’s seminal eliminativist stance, and those of their realist detractors’ responses. A more circumspect reading of the former is proffered that discloses where the so far not fully appreciated, real challenges lie for realism about gravitational energy. I subsequently turn to Lam and Read’s recent proposals for such a realism. Their arguments are critically examined. Special attention is devoted to the (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • General-Relativistic Covariance.Neil Dewar - 2020 - Foundations of Physics 50 (4):294-318.
    This is an essay about general covariance, and what it says about spacetime structure. After outlining a version of the dynamical approach to spacetime theories, and how it struggles to deal with generally covariant theories, I argue that we should think about the symmetry structure of spacetime rather differently in generally-covariant theories compared to non-generally-covariant theories: namely, as a form of internal rather than external symmetry structure.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Defining a crisis: the roles of principles in the search for a theory of quantum gravity.Karen Crowther - 2021 - Synthese 198 (Suppl 14):3489-3516.
    In times of crisis, when current theories are revealed as inadequate to task, and new physics is thought to be required—physics turns to re-evaluate its principles, and to seek new ones. This paper explores the various types, and roles of principles that feature in the problem of quantum gravity as a current crisis in physics. I illustrate the diversity of the principles being appealed to, and show that principles serve in a variety of roles in all stages of the crisis, (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • The nontriviality of trivial general covariance: How electrons restrict ‘time’ coordinates, spinors fit into tensor calculus, and of a tetrad is surplus structure.J. Brian Pitts - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (1):1-24.
    It is a commonplace in the philosophy of physics that any local physical theory can be represented using arbitrary coordinates, simply by using tensor calculus. On the other hand, the physics literature often claims that spinors \emph{as such} cannot be represented in coordinates in a curved space-time. These commonplaces are inconsistent. What general covariance means for theories with fermions, such as electrons, is thus unclear. In fact both commonplaces are wrong. Though it is not widely known, Ogievetsky and Polubarinov constructed (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • The nontriviality of trivial general covariance: How electrons restrict 'time' coordinates, spinors (almost) fit into tensor calculus, and of a tetrad is surplus structure.J. Brian Pitts - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (1):1-24.
    It is a commonplace in the philosophy of physics that any local physical theory can be represented using arbitrary coordinates, simply by using tensor calculus. On the other hand, the physics literature often claims that spinors \emph{as such} cannot be represented in coordinates in a curved space-time. These commonplaces are inconsistent. What general covariance means for theories with fermions, such as electrons, is thus unclear. In fact both commonplaces are wrong. Though it is not widely known, Ogievetsky and Polubarinov constructed (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • A View on Physical Reality.Saeed Masoumi - 2020 - Philosophical Investigations 14 (30):56-74.
    In this paper, some conditions of physical reality are presented. These conditions are, in particular, the conditions of the real physical quantities. The symmetry principles held about reference frames are essential in presenting the conditions. In the stance taken in this paper, gauge symmetry, the different descriptions of the same physical situation, represents what is real. Based on the conditions, the real physical quantities and the real physical descriptions are those that are independent of reference frames. In the rigorous mathematical (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  • On Two Slights to Noether's First Theorem: Mental Causation and General Relativity.J. Brian Pitts - unknown
    It is widely held among philosophers that the conservation of energy is true and important, and widely held among philosophers of science that conservation laws and symmetries are tied together by Noether's first theorem. However, beneath the surface of such consensus lie two slights to Noether's first theorem. First, there is a 325+-year controversy about mind-body interaction in relation to the conservation of energy and momentum, with occasional reversals of opinion. The currently popular Leibnizian view, dominant since the late 19th (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Gauge symmetry and the Theta vacuum.Richard Healey - 2007 - In Mauricio Suarez, Mauro Dorato & Miklos Redei (eds.), EPSA Philosophical Issues in the Sciences · Launch of the European Philosophy of Science Association. Springer. pp. 105--116.
    According to conventional wisdom, local gauge symmetry is not a symmetry of nature, but an artifact of how our theories represent nature. But a study of the so-called theta-vacuum appears to refute this view. The ground state of a quantized non-Abelian Yang-Mills gauge theory is characterized by a real-valued, dimensionless parameter theta—a fundamental new constant of nature. The structure of this vacuum state is often said to arise from a degeneracy of the vacuum of the corresponding classical theory, which degeneracy (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Appearing Out of Nowhere: The Emergence of Spacetime in Quantum Gravity.Karen Crowther - 2014 - Dissertation, University of Sydney
    Quantum gravity is understood as a theory that, in some sense, unifies general relativity (GR) and quantum theory, and is supposed to replace GR at extremely small distances (high-energies). It may be that quantum gravity represents the breakdown of spacetime geometry described by GR. The relationship between quantum gravity and spacetime has been deemed ``emergence'', and the aim of this thesis is to investigate and explicate this relation. After finding traditional philosophical accounts of emergence to be inappropriate, I develop a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Empirical equivalence, artificial gauge freedom and a generalized kretschmann objection.J. Brian Pitts - unknown
    Einstein considered general covariance to characterize the novelty of his General Theory of Relativity (GTR), but Kretschmann thought it merely a formal feature that any theory could have. The claim that GTR is ``already parametrized'' suggests analyzing substantive general covariance as formal general covariance achieved without hiding preferred coordinates as scalar ``clock fields,'' much as Einstein construed general covariance as the lack of preferred coordinates. Physicists often install gauge symmetries artificially with additional fields, as in the transition from Proca's to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Substantive General Covariance: Another Decade of Dispute.Oliver Pooley - 2009 - In Mauricio Suárez, Mauro Dorato & Miklós Rédei (eds.), EPSA Philosophical Issues in the Sciences: Launch of the European Philosophy of Science Association. Springer. pp. 197--209.
    John Earman's recent proposal that a substantive version of general covariance consists in the requirement that diffeomorphism invariance be a gauge symmetry is critically assessed. I argue that such a principle does not serve to differentiate general relativity from pre-relativistic theories. A model-theoretic characterization of two formulations of specially-relativistic theories is suggested. Diffeomorphisms are symmetries of only one such style of formulation and, I argue, Earman's proposal does not provide a reason to deny diffeomorphisms the status of gauge transformations relative (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • Leibniz Equivalence. On Leibniz's Influence on the Logical Empiricist Interpretation of General Relativity.Marco Giovanelli - unknown
    Einstein’s “point-coincidence argument'” as a response to the “hole argument” is usually considered as an expression of “Leibniz equivalence,” a restatement of indiscernibility in the sense of Leibniz. Through a historical-critical analysis of Logical Empiricists' interpretation of General Relativity, the paper attempts to show that this labeling is misleading. Logical Empiricists tried explicitly to understand the point-coincidence argument as an indiscernibility argument of the Leibnizian kind, such as those formulated in the 19th century debate about geometry, by authors such as (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • Underconsideration in Space-time and Particle Physics.J. Brian Pitts - unknown
    The idea that a serious threat to scientific realism comes from unconceived alternatives has been proposed by van Fraassen, Sklar, Stanford and Wray among others. Peter Lipton's critique of this threat from underconsideration is examined briefly in terms of its logic and its applicability to the case of space-time and particle physics. The example of space-time and particle physics indicates a generic heuristic for quantitative sciences for constructing potentially serious cases of underdetermination, involving one-parameter family of rivals T_m that work (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Symmetries and invariances in classical physics.Katherine Brading & Elena Castellani - unknown - In Jeremy Butterfield & John Earman (eds.). Elsevier.
    Symmetry, intended as invariance with respect to a transformation (more precisely, with respect to a transformation group), has acquired more and more importance in modern physics. This Chapter explores in 8 Sections the meaning, application and interpretation of symmetry in classical physics. This is done both in general, and with attention to specific topics. The general topics include illustration of the distinctions between symmetries of objects and of laws, and between symmetry principles and symmetry arguments (such as Curie's principle), and (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   30 citations  
  • The Anderson-Friedman absolute objects program: Several successes, one difficulty.J. Brian Pitts - unknown
    The Anderson-Friedman absolute objects project is reviewed. The Jones-Geroch dust 4-velocity counterexample is resolved by eliminating irrelevant structure. Torretti's example involving constant curvature spaces is shown to have an absolute object on Anderson's analysis. The previously neglected threat of an absolute object from an orthonormal tetrad used for coupling spinors to gravity appears resolvable by eliminating irrelevant fields and using a modified spinor formalism. However, given Anderson's definition, GTR itself has an absolute object (as Robert Geroch has observed recently): a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Absolute objects, counterexamples and general covariance.J. Brian Pitts - unknown
    The Anderson-Friedman absolute objects program has been a favorite analysis of the substantive general covariance that supposedly characterizes Einstein's General Theory of Relativity (GTR). Absolute objects are the same locally in all models (modulo gauge freedom). Substantive general covariance is the lack of absolute objects. Several counterexamples have been proposed, however, including the Jones-Geroch dust and Torretti constant curvature spaces counterexamples. The Jones-Geroch dust case, ostensibly a false positive, is resolved by noting that holes in the dust in some models (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark