Switch to: References

Add citations

You must login to add citations.
  1. The Representational Foundations of Computation.Michael Rescorla - 2015 - Philosophia Mathematica 23 (3):338-366.
    Turing computation over a non-linguistic domain presupposes a notation for the domain. Accordingly, computability theory studies notations for various non-linguistic domains. It illuminates how different ways of representing a domain support different finite mechanical procedures over that domain. Formal definitions and theorems yield a principled classification of notations based upon their computational properties. To understand computability theory, we must recognize that representation is a key target of mathematical inquiry. We must also recognize that computability theory is an intensional enterprise: it (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  • Computing Mechanisms and Autopoietic Systems.Joe Dewhurst - 2016 - In Vincent C. Müller (ed.), Computing and philosophy: Selected papers from IACAP 2014. Cham: Springer. pp. 17-26.
    This chapter draws an analogy between computing mechanisms and autopoietic systems, focusing on the non-representational status of both kinds of system (computational and autopoietic). It will be argued that the role played by input and output components in a computing mechanism closely resembles the relationship between an autopoietic system and its environment, and in this sense differs from the classical understanding of inputs and outputs. The analogy helps to make sense of why we should think of computing mechanisms as non-representational, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Computers Are Syntax All the Way Down: Reply to Bozşahin.William J. Rapaport - 2019 - Minds and Machines 29 (2):227-237.
    A response to a recent critique by Cem Bozşahin of the theory of syntactic semantics as it applies to Helen Keller, and some applications of the theory to the philosophy of computer science.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • La deriva genética como fuerza evolutiva.Ariel Jonathan Roffé - 2015 - In J. Ahumada, N. Venturelli & S. Seno Chibeni (eds.), Selección de Trabajos del IX Encuentro AFHIC y las XXV Jornadas de Epistemología e Historia de la ciencia. pp. 615-626.
    Direct download  
     
    Export citation  
     
    Bookmark  
  • The Cognitive Basis of Computation: Putting Computation in Its Place.Daniel D. Hutto, Erik Myin, Anco Peeters & Farid Zahnoun - 2018 - In Mark Sprevak & Matteo Colombo (eds.), The Routledge Handbook of the Computational Mind. Routledge. pp. 272-282.
    The mainstream view in cognitive science is that computation lies at the basis of and explains cognition. Our analysis reveals that there is no compelling evidence or argument for thinking that brains compute. It makes the case for inverting the explanatory order proposed by the computational basis of cognition thesis. We give reasons to reverse the polarity of standard thinking on this topic, and ask how it is possible that computation, natural and artificial, might be based on cognition and not (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Functional individuation, mechanistic implementation: the proper way of seeing the mechanistic view of concrete computation.Dimitri Coelho Mollo - 2017 - Synthese 195 (8):3477-3497.
    I examine a major objection to the mechanistic view of concrete computation, stemming from an apparent tension between the abstract nature of computational explanation and the tenets of the mechanistic framework: while computational explanation is medium-independent, the mechanistic framework insists on the importance of providing some degree of structural detail about the systems target of the explanation. I show that a common reply to the objection, i.e. that mechanistic explanation of computational systems involves only weak structural constraints, is not enough (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   28 citations  
  • The language of thought hypothesis.Murat Aydede - 2010 - Stanford Encyclopedia of Philosophy.
    A comprehensive introduction to the Language of Though Hypothesis (LOTH) accessible to general audiences. LOTH is an empirical thesis about thought and thinking. For their explication, it postulates a physically realized system of representations that have a combinatorial syntax (and semantics) such that operations on representations are causally sensitive only to the syntactic properties of representations. According to LOTH, thought is, roughly, the tokening of a representation that has a syntactic (constituent) structure with an appropriate semantics. Thinking thus consists in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   27 citations  
  • What Is Nature-Like Computation? A Behavioural Approach and a Notion of Programmability.Hector Zenil - 2013 - Philosophy and Technology (3):1-23.
    The aim of this paper is to propose an alternative behavioural definition of computation (and of a computer) based simply on whether a system is capable of reacting to the environment—the input—as reflected in a measure of programmability. This definition is intended to have relevance beyond the realm of digital computers, particularly vis-à-vis natural systems. This will be done by using an extension of a phase transition coefficient previously defined in an attempt to characterise the dynamical behaviour of cellular automata (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • What Is Nature-Like Computation? A Behavioural Approach and a Notion of Programmability.Hector Zenil - 2014 - Philosophy and Technology 27 (3):399-421.
    The aim of this paper is to propose an alternative behavioural definition of computation based simply on whether a system is capable of reacting to the environment—the input—as reflected in a measure of programmability. This definition is intended to have relevance beyond the realm of digital computers, particularly vis-à-vis natural systems. This will be done by using an extension of a phase transition coefficient previously defined in an attempt to characterise the dynamical behaviour of cellular automata and other systems. The (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Situated Cognition: A Field Guide to Some Open Conceptual and Ontological Issues.Sven Walter - 2014 - Review of Philosophy and Psychology 5 (2):241-263.
    This paper provides an overview over the debate about so-called “situated approaches to cognition” that depart from the intracranialism associated with traditional cognitivism insofar as they stress the importance of body, world, and interaction for cognitive processing. It sketches the outlines of an overarching framework that reveals the differences, commonalities, and interdependencies between the various claims and positions of second-generation cognitive science, and identifies a number of apparently unresolved conceptual and ontological issues.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Programming Languages as Technical Artifacts.Raymond Turner - 2014 - Philosophy and Technology 27 (3):377-397.
    Taken at face value, a programming language is defined by a formal grammar. But, clearly, there is more to it. By themselves, the naked strings of the language do not determine when a program is correct relative to some specification. For this, the constructs of the language must be given some semantic content. Moreover, to be employed to generate physical computations, a programming language must have a physical implementation. How are we to conceptualize this complex package? Ontologically, what kind of (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Computation, individuation, and the received view on representation.Mark Sprevak - 2010 - Studies in History and Philosophy of Science Part A 41 (3):260-270.
    The ‘received view’ about computation is that all computations must involve representational content. Egan and Piccinini argue against the received view. In this paper, I focus on Egan’s arguments, claiming that they fall short of establishing that computations do not involve representational content. I provide positive arguments explaining why computation has to involve representational content, and how that representational content may be of any type. I also argue that there is no need for computational psychology to be individualistic. Finally, I (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   58 citations  
  • Complexity and Extended Phenomenological‐Cognitive Systems.Michael Silberstein & Anthony Chemero - 2012 - Topics in Cognitive Science 4 (1):35-50.
    The complex systems approach to cognitive science invites a new understanding of extended cognitive systems. According to this understanding, extended cognitive systems are heterogenous, composed of brain, body, and niche, non-linearly coupled to one another. This view of cognitive systems, as non-linearly coupled brain–body–niche systems, promises conceptual and methodological advances. In this article we focus on two of these. First, the fundamental interdependence among brain, body, and niche makes it possible to explain extended cognition without invoking representations or computation. Second, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   39 citations  
  • The multiple-computations theorem and the physics of singling out a computation.Orly Shenker & Meir Hemmo - 2022 - The Monist 105 (1):175-193.
    The problem of multiple-computations discovered by Hilary Putnam presents a deep difficulty for functionalism (of all sorts, computational and causal). We describe in out- line why Putnam’s result, and likewise the more restricted result we call the Multiple- Computations Theorem, are in fact theorems of statistical mechanics. We show why the mere interaction of a computing system with its environment cannot single out a computation as the preferred one amongst the many computations implemented by the system. We explain why nonreductive (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Why we view the brain as a computer.Oron Shagrir - 2006 - Synthese 153 (3):393-416.
    The view that the brain is a sort of computer has functioned as a theoretical guideline both in cognitive science and, more recently, in neuroscience. But since we can view every physical system as a computer, it has been less than clear what this view amounts to. By considering in some detail a seminal study in computational neuroscience, I first suggest that neuroscientists invoke the computational outlook to explain regularities that are formulated in terms of the information content of electrical (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   55 citations  
  • Marr on computational-level theories.Oron Shagrir - 2010 - Philosophy of Science 77 (4):477-500.
    According to Marr, a computational-level theory consists of two elements, the what and the why . This article highlights the distinct role of the Why element in the computational analysis of vision. Three theses are advanced: ( a ) that the Why element plays an explanatory role in computational-level theories, ( b ) that its goal is to explain why the computed function (specified by the What element) is appropriate for a given visual task, and ( c ) that the (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   48 citations  
  • 1. Marr on Computational-Level Theories Marr on Computational-Level Theories (pp. 477-500).Oron Shagrir, John D. Norton, Holger Andreas, Jouni-Matti Kuukkanen, Aris Spanos, Eckhart Arnold, Elliott Sober, Peter Gildenhuys & Adela Helena Roszkowski - 2010 - Philosophy of Science 77 (4):477-500.
    According to Marr, a computational-level theory consists of two elements, the what and the why. This article highlights the distinct role of the Why element in the computational analysis of vision. Three theses are advanced: that the Why element plays an explanatory role in computational-level theories, that its goal is to explain why the computed function is appropriate for a given visual task, and that the explanation consists in showing that the functional relations between the representing cells are similar to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   27 citations  
  • In defense of the semantic view of computation.Oron Shagrir - 2020 - Synthese 197 (9):4083-4108.
    The semantic view of computation is the claim that semantic properties play an essential role in the individuation of physical computing systems such as laptops and brains. The main argument for the semantic view rests on the fact that some physical systems simultaneously implement different automata at the same time, in the same space, and even in the very same physical properties. Recently, several authors have challenged this argument. They accept the premise of simultaneous implementation but reject the semantic conclusion. (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   31 citations  
  • Computation, San Diego Style.Oron Shagrir - 2010 - Philosophy of Science 77 (5):862-874.
    What does it mean to say that a physical system computes or, specifically, to say that the nervous system computes? One answer, endorsed here, is that computing is a sort of modeling. I trace this line of answer in the conceptual and philosophical work conducted over the last 3 decades by researchers associated with the University of California, San Diego. The linkage between their work and the modeling notion is no coincidence: the modeling notion aims to account for the computational (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Computation, Implementation, Cognition.Oron Shagrir - 2012 - Minds and Machines 22 (2):137-148.
    Putnam (Representations and reality. MIT Press, Cambridge, 1988) and Searle (The rediscovery of the mind. MIT Press, Cambridge, 1992) famously argue that almost every physical system implements every finite computation. This universal implementation claim, if correct, puts at the risk of triviality certain functional and computational views of the mind. Several authors have offered theories of implementation that allegedly avoid the pitfalls of universal implementation. My aim in this paper is to suggest that these theories are still consistent with a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  • The scope and limits of a mechanistic view of computational explanation.Maria Serban - 2015 - Synthese 192 (10):3371-3396.
    An increasing number of philosophers have promoted the idea that mechanism provides a fruitful framework for thinking about the explanatory contributions of computational approaches in cognitive neuroscience. For instance, Piccinini and Bahar :453–488, 2013) have recently argued that neural computation constitutes a sui generis category of physical computation which can play a genuine explanatory role in the context of investigating neural and cognitive processes. The core of their proposal is to conceive of computational explanations in cognitive neuroscience as a subspecies (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Can Informational Theories Account for Metarepresentation?Miguel Ángel Sebastián & Marc Artiga - 2020 - Topoi 39 (1):81-94.
    In this essay we discuss recent attempts to analyse the notion of representation, as it is employed in cognitive science, in purely informational terms. In particular, we argue that recent informational theories cannot accommodate the existence of metarepresentations. Since metarepresentations play a central role in the explanation of many cognitive abilities, this is a serious shortcoming of these proposals.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • A theory of computational implementation.Michael Rescorla - 2014 - Synthese 191 (6):1277-1307.
    I articulate and defend a new theory of what it is for a physical system to implement an abstract computational model. According to my descriptivist theory, a physical system implements a computational model just in case the model accurately describes the system. Specifically, the system must reliably transit between computational states in accord with mechanical instructions encoded by the model. I contrast my theory with an influential approach to computational implementation espoused by Chalmers, Putnam, and others. I deploy my theory (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  • Are Computational Transitions Sensitive to Semantics?Michael Rescorla - 2012 - Australasian Journal of Philosophy 90 (4):703-721.
    The formal conception of computation (FCC) holds that computational processes are not sensitive to semantic properties. FCC is popular, but it faces well-known difficulties. Accordingly, authors such as Block and Peacocke pursue a ?semantically-laden? alternative, according to which computation can be sensitive to semantics. I argue that computation is insensitive to semantics within a wide range of computational systems, including any system with ?derived? rather than ?original? intentionality. FCC yields the correct verdict for these systems. I conclude that there is (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Syntax, Semantics, and Computer Programs.William J. Rapaport - 2020 - Philosophy and Technology 33 (2):309-321.
    Turner argues that computer programs must have purposes, that implementation is not a kind of semantics, and that computers might need to understand what they do. I respectfully disagree: Computer programs need not have purposes, implementation is a kind of semantic interpretation, and neither human computers nor computing machines need to understand what they do.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Neural Representations Beyond “Plus X”.Alessio Plebe & Vivian M. De La Cruz - 2018 - Minds and Machines 28 (1):93-117.
    In this paper we defend structural representations, more specifically neural structural representation. We are not alone in this, many are currently engaged in this endeavor. The direction we take, however, diverges from the main road, a road paved by the mathematical theory of measure that, in the 1970s, established homomorphism as the way to map empirical domains of things in the world to the codomain of numbers. By adopting the mind as codomain, this mapping became a boon for all those (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Mind as Neural Software? Understanding Functionalism, Computationalism, and Computational Functionalism.Gualtiero Piccinini - 2010 - Philosophy and Phenomenological Research 81 (2):269-311.
    Defending or attacking either functionalism or computationalism requires clarity on what they amount to and what evidence counts for or against them. My goal here is not to evaluate their plausibility. My goal is to formulate them and their relationship clearly enough that we can determine which type of evidence is relevant to them. I aim to dispel some sources of confusion that surround functionalism and computationalism, recruit recent philosophical work on mechanisms and computation to shed light on them, and (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   38 citations  
  • Computation vs. information processing: why their difference matters to cognitive science.Gualtiero Piccinini & Andrea Scarantino - 2010 - Studies in History and Philosophy of Science Part A 41 (3):237-246.
    Since the cognitive revolution, it has become commonplace that cognition involves both computation and information processing. Is this one claim or two? Is computation the same as information processing? The two terms are often used interchangeably, but this usage masks important differences. In this paper, we distinguish information processing from computation and examine some of their mutual relations, shedding light on the role each can play in a theory of cognition. We recommend that theorists of cognition be explicit and careful (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   33 citations  
  • Computationalism in the Philosophy of Mind.Gualtiero Piccinini - 2009 - Philosophy Compass 4 (3):515-532.
    Computationalism has been the mainstream view of cognition for decades. There are periodic reports of its demise, but they are greatly exaggerated. This essay surveys some recent literature on computationalism. It concludes that computationalism is a family of theories about the mechanisms of cognition. The main relevant evidence for testing it comes from neuroscience, though psychology and AI are relevant too. Computationalism comes in many versions, which continue to guide competing research programs in philosophy of mind as well as psychology (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  • Computing mechanisms.Gualtiero Piccinini - 2007 - Philosophy of Science 74 (4):501-526.
    This paper offers an account of what it is for a physical system to be a computing mechanism—a system that performs computations. A computing mechanism is a mechanism whose function is to generate output strings from input strings and (possibly) internal states, in accordance with a general rule that applies to all relevant strings and depends on the input strings and (possibly) internal states for its application. This account is motivated by reasons endogenous to the philosophy of computing, namely, doing (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   93 citations  
  • Computational modeling vs. computational explanation: Is everything a Turing machine, and does it matter to the philosophy of mind?Gualtiero Piccinini - 2007 - Australasian Journal of Philosophy 85 (1):93 – 115.
    According to pancomputationalism, everything is a computing system. In this paper, I distinguish between different varieties of pancomputationalism. I find that although some varieties are more plausible than others, only the strongest variety is relevant to the philosophy of mind, but only the most trivial varieties are true. As a side effect of this exercise, I offer a clarified distinction between computational modelling and computational explanation.<br><br>.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   45 citations  
  • Computers.Gualtiero Piccinini - 2008 - Pacific Philosophical Quarterly 89 (1):32–73.
    I offer an explication of the notion of computer, grounded in the practices of computability theorists and computer scientists. I begin by explaining what distinguishes computers from calculators. Then, I offer a systematic taxonomy of kinds of computer, including hard-wired versus programmable, general-purpose versus special-purpose, analog versus digital, and serial versus parallel, giving explicit criteria for each kind. My account is mechanistic: which class a system belongs in, and which functions are computable by which system, depends on the system's mechanistic (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   33 citations  
  • Deep learning and cognitive science.Pietro Perconti & Alessio Plebe - 2020 - Cognition 203:104365.
    In recent years, the family of algorithms collected under the term ``deep learning'' has revolutionized artificial intelligence, enabling machines to reach human-like performances in many complex cognitive tasks. Although deep learning models are grounded in the connectionist paradigm, their recent advances were basically developed with engineering goals in mind. Despite of their applied focus, deep learning models eventually seem fruitful for cognitive purposes. This can be thought as a kind of biological exaptation, where a physiological structure becomes applicable for a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Do Computers "Have Syntax, But No Semantics"?Jaroslav Peregrin - 2021 - Minds and Machines 31 (2):305-321.
    The heyday of discussions initiated by Searle's claim that computers have syntax, but no semantics has now past, yet philosophers and scientists still tend to frame their views on artificial intelligence in terms of syntax and semantics. In this paper I do not intend to take part in these discussions; my aim is more fundamental, viz. to ask what claims about syntax and semantics in this context can mean in the first place. And I argue that their sense is so (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Theory of Practical Meaning.Carlotta Pavese - 2017 - Philosophical Topics 45 (2):65-96.
    This essay is divided into two parts. In the first part (§2), I introduce the idea of practical meaning by looking at a certain kind of procedural systems — the motor system — that play a central role in computational explanations of motor behavior. I argue that in order to give a satisfactory account of the content of the representations computed by motor systems (motor commands), we need to appeal to a distinctively practical kind of meaning. Defending the explanatory relevance (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  • The semantic view of computation and the argument from the cognitive science practice.Alfredo Paternoster & Fabrizio Calzavarini - 2022 - Synthese 200 (2):1-24.
    According to the semantic view of computation, computations cannot be individuated without invoking semantic properties. A traditional argument for the semantic view is what we shall refer to as the argument from the cognitive science practice. In its general form, this argument rests on the idea that, since cognitive scientists describe computations (in explanations and theories) in semantic terms, computations are individuated semantically. Although commonly invoked in the computational literature, the argument from the cognitive science practice has never been discussed (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Embedded Seeing: Vision in the Natural World.Nicoletta Orlandi - 2011 - Noûs 47 (4):727-747.
  • Against Structuralist Theories of Computational Implementation.Michael Rescorla - 2013 - British Journal for the Philosophy of Science 64 (4):681-707.
    Under what conditions does a physical system implement or realize a computation? Structuralism about computational implementation, espoused by Chalmers and others, holds that a physical system realizes a computation just in case the system instantiates a pattern of causal organization isomorphic to the computation’s formal structure. I argue against structuralism through counter-examples drawn from computer science. On my opposing view, computational implementation sometimes requires instantiating semantic properties that outstrip any relevant pattern of causal organization. In developing my argument, I defend (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  • Symbol grounding in computational systems: A paradox of intentions.Vincent C. Müller - 2009 - Minds and Machines 19 (4):529-541.
    The paper presents a paradoxical feature of computational systems that suggests that computationalism cannot explain symbol grounding. If the mind is a digital computer, as computationalism claims, then it can be computing either over meaningful symbols or over meaningless symbols. If it is computing over meaningful symbols its functioning presupposes the existence of meaningful symbols in the system, i.e. it implies semantic nativism. If the mind is computing over meaningless symbols, no intentional cognitive processes are available prior to symbol grounding. (...)
    Direct download (15 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Objections to Computationalism: A Survey.Marcin Miłkowski - 2018 - Roczniki Filozoficzne 66 (3):57-75.
    In this paper, the Author reviewed the typical objections against the claim that brains are computers, or, to be more precise, information-processing mechanisms. By showing that practically all the popular objections are based on uncharitable interpretations of the claim, he argues that the claim is likely to be true, relevant to contemporary cognitive science, and non-trivial.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • From Computer Metaphor to Computational Modeling: The Evolution of Computationalism.Marcin Miłkowski - 2018 - Minds and Machines 28 (3):515-541.
    In this paper, I argue that computationalism is a progressive research tradition. Its metaphysical assumptions are that nervous systems are computational, and that information processing is necessary for cognition to occur. First, the primary reasons why information processing should explain cognition are reviewed. Then I argue that early formulations of these reasons are outdated. However, by relying on the mechanistic account of physical computation, they can be recast in a compelling way. Next, I contrast two computational models of working memory (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Toward Analog Neural Computation.Corey J. Maley - 2018 - Minds and Machines 28 (1):77-91.
    Computationalism about the brain is the view that the brain literally performs computations. For the view to be interesting, we need an account of computation. The most well-developed account of computation is Turing Machine computation, the account provided by theoretical computer science which provides the basis for contemporary digital computers. Some have thought that, given the seemingly-close analogy between the all-or-nothing nature of neural spikes in brains and the binary nature of digital logic, neural computation could be a species of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  • Medium Independence and the Failure of the Mechanistic Account of Computation.Corey J. Maley - 2023 - Ergo: An Open Access Journal of Philosophy 10.
    Current orthodoxy takes representation to be essential to computation. However, a philosophical account of computation that does not appeal to representation would be useful, given the difficulties involved in successfully theorizing representation. Piccinini's recent mechanistic account of computation proposes to do just that: it couches computation in terms of what certain mechanisms do without requiring the manipulation or processing of representations whatsoever (Piccinini 2015). Most crucially, mechanisms must process medium-independent vehicles. There are two ways to understand what "medium-independence" means on (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Role of Observers in Computations.Peter Leupold - 2018 - Minds and Machines 28 (3):427-444.
    John Searle raised the question whether all computation is observer-relative. Indeed, all of the common views of computation, be they semantical, functional or causal rely on mapping something onto the states of a physical or abstract process. In order to effectively execute such a mapping, this process would have to be observed in some way. Thus a probably syntactical analysis by an observer seems to be essential for judging whether a given process implements some computation or not. In order to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Mechanisms, Wide Functions, and Content: Towards a Computational Pluralism.Jonny Lee - 2021 - British Journal for the Philosophy of Science 72 (1):221-244.
    In recent years, the ‘mechanistic view’ has developed as a popular alternative to the ‘semantic view’ concerning the identity of physical computation. However, semanticists have provided powerful arguments that suggest the mechanistic view fails to deliver essential distinctions between paradigmatic computational operations. This article reviews responses on behalf of the mechanist and uses this opportunity to propose a type of pluralism about computational identity. This pluralism contends that there are multiple ‘levels’ of properties and relations pertaining to computation that can (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Enactivism Meets Mechanism: Tensions & Congruities in Cognitive Science.Jonny Lee - 2023 - Minds and Machines 33 (1):153-184.
    Enactivism advances an understanding of cognition rooted in the dynamic interaction between an embodied agent and their environment, whilst new mechanism suggests that cognition is explained by uncovering the organised components underlying cognitive capacities. On the face of it, the mechanistic model’s emphasis on localisable and decomposable mechanisms, often neural in nature, runs contrary to the enactivist ethos. Despite appearances, this paper argues that mechanistic explanations of cognition, being neither narrow nor reductive, and compatible with plausible iterations of ideas like (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Meaning of Embodiment.Julian Kiverstein - 2012 - Topics in Cognitive Science 4 (4):740-758.
    There is substantial disagreement among philosophers of embodied cognitive science about the meaning of embodiment. In what follows, I describe three different views that can be found in the current literature. I show how this debate centers around the question of whether the science of embodied cognition can retain the computer theory of mind. One view, which I will label body functionalism, takes the body to play the functional role of linking external resources for problem solving with internal biological machinery. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Much ado about nothing? Why going non-semantic is not merely semantics.Daniel D. Hutto & Erik Myin - 2018 - Philosophical Explorations 21 (2):187-203.
    This paper argues that deciding on whether the cognitive sciences need a Representational Theory of Mind matters. Far from being merely semantic or inconsequential, the answer we give to the RTM-question makes a difference to how we conceive of minds. How we answer determines which theoretical framework the sciences of mind ought to embrace. The structure of this paper is as follows. Section 1 outlines Rowlands’s argument that the RTM-question is a bad question and that attempts to answer it, one (...)
    No categories
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Extensive enactivism: why keep it all in?Daniel D. Hutto, Michael D. Kirchhoff & Erik Myin - 2014 - Frontiers in Human Neuroscience 8 (706):102178.
    Radical enactive and embodied approaches to cognitive science oppose the received view in the sciences of the mind in denying that cognition fundamentally involves contentful mental representation. This paper argues that the fate of representationalism in cognitive science matters significantly to how best to understand the extent of cognition. It seeks to establish that any move away from representationalism toward pure, empirical functionalism fails to provide a substantive “mark of the cognitive” and is bereft of other adequate means for individuating (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  • Computation, external factors, and cognitive explanations.Amir Horowitz - 2007 - Philosophical Psychology 20 (1):65-80.
    Computational properties, it is standardly assumed, are to be sharply distinguished from semantic properties. Specifically, while it is standardly assumed that the semantic properties of a cognitive system are externally or non-individualistically individuated, computational properties are supposed to be individualistic and internal. Yet some philosophers (e.g., Tyler Burge) argue that content impacts computation, and further, that environmental factors impact computation. Oron Shagrir has recently argued for these theses in a novel way, and gave them novel interpretations. In this paper I (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   10 citations