Citations of:
Philosophical method and Galileo's paradox of infinity
In Bart Van Kerkhove (ed.), New Perspectives on Mathematical Practices: Essays in Philosophy and History of Mathematics : Brussels, Belgium, 26-28 March 2007. World Scientfic (2008)
Add citations
You must login to add citations.
|
|
Recent work has defended “Euclidean” theories of set size, in which Cantor’s Principle (two sets have equally many elements if and only if there is a one-to-one correspondence between them) is abandoned in favor of the Part-Whole Principle (if A is a proper subset of B then A is smaller than B). It has also been suggested that Gödel’s argument for the unique correctness of Cantor’s Principle is inadequate. Here we see from simple examples, not that Euclidean theories of set (...) |
|
The notion of a proposition is central to philosophy. But it is subject to paradoxes. A natural response is a hierarchical account and, ever since Russell proposed his theory of types in 1908, this has been the strategy of choice. But in this paper I raise a problem for such accounts. While this does not seem to have been recognized before, it would seem to render existing such accounts inadequate. The main purpose of the paper, however, is to provide a (...) |
|
In a fair, infinite lottery, it is possible to conclude that drawing a number divisible by four is strictly less likely than drawing an even number; and, with apparently equal cogency, that drawing a number divisible by four is equally as likely as drawing an even number. |
|
It is widely acknowledged that some truths or facts don’t have a minimal full ground [see e.g. Fine ]. Every full ground of them contains a smaller full ground. In this paper I’ll propose a minimality constraint on immediate grounding and I’ll show that it doesn’t fall prey to the arguments that tell against an unqualified minimality constraint. Furthermore, the assumption that all cases of grounding can be understood in terms of immediate grounding will be defended. This assumption guarantees that (...) |