Switch to: References

Add citations

You must login to add citations.
  1. Tunneling Confronts Special Relativity.Günter Nimtz - 2011 - Foundations of Physics 41 (7):1193-1199.
    Experiments with evanescent modes and tunneling particles have shown that (i) their signal velocity may be faster than light, (ii) they are described by virtual particles, (iii) they are nonlocal and act at a distance, (iv) experimental tunneling data of phonons, photons, and electrons display a universal scattering time at the tunneling barrier front, and (v) the properties of evanescent, i.e. tunneling modes are not compatible with the special theory of relativity.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • From a 1D Completed Scattering and Double Slit Diffraction to the Quantum-Classical Problem for Isolated Systems.Nikolay L. Chuprikov - 2011 - Foundations of Physics 41 (9):1502-1520.
    By probability theory the probability space to underlie the set of statistical data described by the squared modulus of a coherent superposition of microscopically distinct (sub)states (CSMDS) is non-Kolmogorovian and, thus, such data are mutually incompatible. For us this fact means that the squared modulus of a CSMDS cannot be unambiguously interpreted as the probability density and quantum mechanics itself, with its current approach to CSMDSs, does not allow a correct statistical interpretation. By the example of a 1D completed scattering (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • On the Traversal Time of Barriers.Horst Aichmann & Günter Nimtz - 2014 - Foundations of Physics 44 (6):678-688.
    Fifty years ago Hartman studied the barrier transmission time of wave packets (J Appl Phys 33:3427–3433, 1962). He was inspired by the tunneling experiments across thin insulating layers at that time. For opaque barriers he calculated faster than light propagation and a transmission time independent of barrier length, which is called the Hartman effect. A faster than light (FTL or superluminal) wave packet velocity was deduced in analog tunneling experiments with microwaves and with infrared light thirty years later. Recently, the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark