Switch to: References

Citations of:

Deterministic Laws and Epistemic Chances

In Yemima Ben-Menahem & Meir Hemmo (eds.), Probability in Physics. Springer. pp. 73--85 (2010)

Add citations

You must login to add citations.
  1. Probabilities in Statistical Mechanics.Wayne C. Myrvold - 2016 - In Alan Hájek & Christopher Hitchcock (eds.), The Oxford Handbook of Probability and Philosophy. Oxford: Oxford University Press. pp. 573-600.
    This chapter will review selected aspects of the terrain of discussions about probabilities in statistical mechanics (with no pretensions to exhaustiveness, though the major issues will be touched upon), and will argue for a number of claims. None of the claims to be defended is entirely original, but all deserve emphasis. The first, and least controversial, is that probabilistic notions are needed to make sense of statistical mechanics. The reason for this is the same reason that convinced Maxwell, Gibbs, and (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  • Chance and determinism.Roman Frigg - 2016 - In Alan Hájek & Christopher Hitchcock (eds.), The Oxford Handbook of Probability and Philosophy. Oxford: Oxford University Press.
    Determinism and chance seem to be irreconcilable opposites: either something is chancy or it is deterministic but not both. Yet there are processes which appear to square the circle by being chancy and deterministic at once, and the appearance is backed by well-confirmed scientific theories such as statistical mechanics which also seem to provide us with chances for deterministic processes. Is this possible, and if so how? In this essay I discuss this question for probabilities as they occur in the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • Stability in Cosmology, from Einstein to Inflation.C. D. McCoy - 2020 - In Claus Beisbart, Tilman Sauer & Christian Wüthrich (eds.), Thinking About Space and Time: 100 Years of Applying and Interpreting General Relativity. Cham: Birkhäuser. pp. 71-89.
    I investigate the role of stability in cosmology through two episodes from the recent history of cosmology: Einstein’s static universe and Eddington’s demonstration of its instability, and the flatness problem of the hot big bang model and its claimed solution by inflationary theory. These episodes illustrate differing reactions to instability in cosmological models, both positive ones and negative ones. To provide some context to these reactions, I also situate them in relation to perspectives on stability from dynamical systems theory and (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Equidynamics and reliable reasoning about frequencies: Michael Strevens: Tychomancy: Inferring probability from causal structure. Cambridge, MA: Harvard University Press, 265pp, $39.95 HB.Marshall Abrams, Frederick Eberhardt & Michael Strevens - 2015 - Metascience 24 (2):173-188.
    A symposium on Michael Strevens' book "Tychomancy", concerning the psychological roots and historical significance of physical intuition about probability in physics, biology, and elsewhere.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Understanding probability and irreversibility in the Mori-Zwanzig projection operator formalism.Michael te Vrugt - 2022 - European Journal for Philosophy of Science 12 (3):1-36.
    Explaining the emergence of stochastic irreversible macroscopic dynamics from time-reversible deterministic microscopic dynamics is one of the key problems in philosophy of physics. The Mori-Zwanzig projection operator formalism, which is one of the most important methods of modern nonequilibrium statistical mechanics, allows for a systematic derivation of irreversible transport equations from reversible microdynamics and thus provides a useful framework for understanding this issue. However, discussions of the MZ formalism in philosophy of physics tend to focus on simple variants rather than (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Dynamic probability and the problem of initial conditions.Michael Strevens - 2021 - Synthese 199 (5-6):14617-14639.
    Dynamic approaches to understanding probability in the non-fundamental sciences turn on certain properties of physical processes that are apt to produce “probabilistically patterned” outcomes. The dynamic properties on their own, however, seem not quite sufficient to explain the patterns; in addition, some sort of assumption about initial conditions must be made, an assumption that itself typically takes a probabilistic form. How should such a posit be understood? That is the problem of initial conditions. Reichenbach, in his doctoral dissertation, floated a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Probabilities as Ratios of Ranges in Initial-State Spaces.Jacob Rosenthal - 2012 - Journal of Logic, Language and Information 21 (2):217-236.
    A proposal for an objective interpretation of probability is introduced and discussed: probabilities as deriving from ranges in suitably structured initial-state spaces. Roughly, the probability of an event on a chance trial is the proportion of initial states that lead to the event in question within the space of all possible initial states associated with this type of experiment, provided that the proportion is approximately the same in any not too small subregion of the space. This I would like to (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  • Johannes von Kries’s Range Conception, the Method of Arbitrary Functions, and Related Modern Approaches to Probability.Jacob Rosenthal - 2016 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 47 (1):151-170.
    A conception of probability that can be traced back to Johannes von Kries is introduced: the “Spielraum” or range conception. Its close connection to the so-called method of arbitrary functions is highlighted. Possible interpretations of it are discussed, and likewise its scope and its relation to certain current interpretations of probability. Taken together, these approaches form a class of interpretations of probability in its own right, but also with its own problems. These, too, are introduced, discussed, and proposals in response (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • How chance explains.Michael Townsen Hicks & Alastair Wilson - 2021 - Noûs 57 (2):290-315.
    What explains the outcomes of chance processes? We claim that their setups do. Chances, we think, mediate these explanations of outcome by setup but do not feature in them. Facts about chances do feature in explanations of a different kind: higher-order explanations, which explain how and why setups explain their outcomes. In this paper, we elucidate this 'mediator view' of chancy explanation and defend it from a series of objections. We then show how it changes the playing field in four (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • A subjectivist’s guide to deterministic chance.J. Dmitri Gallow - 2021 - Synthese 198 (5):4339-4372.
    I present an account of deterministic chance which builds upon the physico-mathematical approach to theorizing about deterministic chance known as 'the method of arbitrary functions'. This approach promisingly yields deterministic probabilities which align with what we take the chances to be---it tells us that there is approximately a 1/2 probability of a spun roulette wheel stopping on black, and approximately a 1/2 probability of a flipped coin landing heads up---but it requires some probabilistic materials to work with. I contend that (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Objectivity and the Method of Arbitrary Functions.Chloé de Canson - 2022 - British Journal for the Philosophy of Science 73 (3):663-684.
    There is widespread excitement in the literature about the method of arbitrary functions: many take it to show that it is from the dynamics of systems that the objectivity of probabilities emerge. In this paper, I differentiate three ways in which a probability function might be objective, and I argue that the method of arbitrary functions cannot help us show that dynamics objectivise probabilities in any of these senses.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Less is Different: Emergence and Reduction Reconciled. [REVIEW]Jeremy Butterfield - 2011 - Foundations of Physics 41 (6):1065-1135.
    This is a companion to another paper. Together they rebut two widespread philosophical doctrines about emergence. The first, and main, doctrine is that emergence is incompatible with reduction. The second is that emergence is supervenience; or more exactly, supervenience without reduction.In the other paper, I develop these rebuttals in general terms, emphasising the second rebuttal. Here I discuss the situation in physics, emphasising the first rebuttal. I focus on limiting relations between theories and illustrate my claims with four examples, each (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   147 citations  
  • A Humean Guide to Spielraum Probabilities.Claus Beisbart - 2016 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 47 (1):189-216.
    The most promising accounts of ontic probability include the Spielraum conception of probabilities, which can be traced back to J. von Kries and H. Poincaré, and the best system account by D. Lewis. This paper aims at comparing both accounts and at combining them to obtain the best of both worlds. The extensions of both Spielraum and best system probabilities do not coincide because the former only apply to systems with a special dynamics. Conversely, Spielraum probabilities may not be part (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • The ergodic hierarchy.Roman Frigg & Joseph Berkovitz - 2011 - Stanford Encyclopedia of Philosophy.
    The so-called ergodic hierarchy (EH) is a central part of ergodic theory. It is a hierarchy of properties that dynamical systems can possess. Its five levels are egrodicity, weak mixing, strong mixing, Kolomogorov, and Bernoulli. Although EH is a mathematical theory, its concepts have been widely used in the foundations of statistical physics, accounts of randomness, and discussions about the nature of chaos. We introduce EH and discuss how its applications in these fields.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  • Autonomy generalised; or, Why doesn’t physics matter more?Katie Robertson - forthcoming - Ergo.
    In what sense are the special sciences autonomous of fundamental physics? Autonomy is an enduring theme in discussions of the relationship between the special sciences and fundamental physics or, more generally, between higher and lower-level facts. Discussion of ‘autonomy’ often fails to recognise that autonomy admits of degrees; consequently, autonomy is either taken to require full independence, or risk relegation to mere apparent autonomy. In addition, the definition of autonomy used by Fodor, the most famous proponent of the autonomy of (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Philosophy of Quantum Probability - An empiricist study of its formalism and logic.Ronnie Hermens - unknown
    The use of probability theory is widespread in our daily life as well as in scientific theories. In virtually all cases, calculations can be carried out within the framework of classical probability theory. A special exception is given by quantum mechanics, which gives rise to a new probability theory: quantum probability theory. This dissertation deals with the question of how this formalism can be understood from a philosophical and physical perspective. The dissertation is divided into three parts. In the first (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • The Case for Quantum State Realism.Morgan C. Tait - 2012 - Dissertation, The University of Western Ontario
    I argue for a realist interpretation of the quantum state. I begin by reviewing and critically evaluating two arguments for an antirealist interpretation of the quantum state, the first derived from the so-called ‘measurement problem’, and the second from the concept of local causality. I argue that existing antirealist interpretations do not solve the measurement problem. Furthermore, I argue that it is possible to construct a local, realist interpretation of quantum mechanics, using methods borrowed from quantum field theory and based (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Causal Interpretations of Probability.Wolfgang Pietsch - unknown
    The prospects of a causal interpretation of probability are examined. Various accounts both from the history of scientific method and from recent developments in the tradition of the method of arbitrary functions, in particular by Strevens, Rosenthal, and Abrams, are briefly introduced and assessed. I then present a specific account of causal probability with the following features: First, the link between causal probability and a particular account of induction and causation is established, namely eliminative induction and the related difference-making account (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Determinism.Charlotte Werndl - 2016 - In Meghan Griffith, Kevin Timpe & Neil Levy (eds.), Routledge Companion to Free Will. Routledge.
    This article focuses on three recent discussions on determinism in the philosophy of science. First, determinism and predictability will be discussed. Then, second, the paper turns to the topic of determinism, indeterminism, observational equivalence and randomness. Finally, third, there will be a discussion about deterministic probabilities. The paper will end with a conclusion.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation