Switch to: References

Add citations

You must login to add citations.
  1. Philosophy of Mathematical Practice: A Primer for Mathematics Educators.Yacin Hamami & Rebecca Morris - forthcoming - ZDM Mathematics Education.
    In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a movement known as the philosophy of mathematical practice . In this paper we offer a survey of this movement aimed at mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of mathematical practice covering topics including the (...)
    Direct download (2 more)  
    Export citation  
    Bookmark   4 citations  
  • Reliability of Mathematical Inference.Jeremy Avigad - 2020 - Synthese 198 (8):7377-7399.
    Of all the demands that mathematics imposes on its practitioners, one of the most fundamental is that proofs ought to be correct. It has been common since the turn of the twentieth century to take correctness to be underwritten by the existence of formal derivations in a suitable axiomatic foundation, but then it is hard to see how this normative standard can be met, given the differences between informal proofs and formal derivations, and given the inherent fragility and complexity of (...)
    Direct download (6 more)  
    Export citation  
    Bookmark   11 citations  
  • Plans and Planning in Mathematical Proofs.Yacin Hamami & Rebecca Lea Morris - forthcoming - Review of Symbolic Logic:1-40.
    In practice, mathematical proofs are most often the result of careful planning by the agents who produced them. As a consequence, each mathematical proof inherits a plan in virtue of the way it is produced, a plan which underlies its “architecture” or “unity”. This paper provides an account of plans and planning in the context of mathematical proofs. The approach adopted here consists in looking for these notions not in mathematical proofs themselves, but in the agents who produced them. The (...)
    Direct download (3 more)  
    Export citation  
    Bookmark   3 citations  
  • Increasing Specialization: Why We Need to Make Mathematics More Accessible.Rebecca Lea Morris - 2020 - Social Epistemology 35 (1):37-47.
    Mathematics is becoming increasingly specialized, divided into a vast and growing number of subfields. While this division of cognitive labor has important benefits, it also has a significant drawb...
    Direct download (4 more)  
    Export citation  
    Bookmark   1 citation