Switch to: References

Add citations

You must login to add citations.
  1. Philosophy of Mathematical Practice: A Primer for Mathematics Educators.Yacin Hamami & Rebecca Morris - forthcoming - ZDM Mathematics Education.
    In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a movement known as the philosophy of mathematical practice . In this paper we offer a survey of this movement aimed at mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of mathematical practice covering topics including the (...)
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark   4 citations  
  • Computational Complexity Theory and the Philosophy of Mathematics†.Walter Dean - 2019 - Philosophia Mathematica 27 (3):381-439.
    Computational complexity theory is a subfield of computer science originating in computability theory and the study of algorithms for solving practical mathematical problems. Amongst its aims is classifying problems by their degree of difficulty — i.e., how hard they are to solve computationally. This paper highlights the significance of complexity theory relative to questions traditionally asked by philosophers of mathematics while also attempting to isolate some new ones — e.g., about the notion of feasibility in mathematics, the $\mathbf{P} \neq \mathbf{NP}$ (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Reliability of Mathematical Inference.Jeremy Avigad - 2020 - Synthese 198 (8):7377-7399.
    Of all the demands that mathematics imposes on its practitioners, one of the most fundamental is that proofs ought to be correct. It has been common since the turn of the twentieth century to take correctness to be underwritten by the existence of formal derivations in a suitable axiomatic foundation, but then it is hard to see how this normative standard can be met, given the differences between informal proofs and formal derivations, and given the inherent fragility and complexity of (...)
    Direct download (6 more)  
    Translate
     
     
    Export citation  
     
    Bookmark   11 citations  
  • Philosophy of Mathematical Practice — Motivations, Themes and Prospects.Jessica Carter - 2019 - Philosophia Mathematica 27 (1):1-32.
    ABSTRACT A number of examples of studies from the field ‘The Philosophy of Mathematical Practice’ are given. To characterise this new field, three different strands are identified: an agent-based, a historical, and an epistemological PMP. These differ in how they understand ‘practice’ and which assumptions lie at the core of their investigations. In the last part a general framework, capturing some overall structure of the field, is proposed.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  • The Concept of “Character” in Dirichlet’s Theorem on Primes in an Arithmetic Progression.Jeremy Avigad & Rebecca Morris - 2014 - Archive for History of Exact Sciences 68 (3):265-326.
    In 1837, Dirichlet proved that there are infinitely many primes in any arithmetic progression in which the terms do not all share a common factor. We survey implicit and explicit uses ofDirichlet characters in presentations of Dirichlet’s proof in the nineteenth and early twentieth centuries, with an eye toward understanding some of the pragmatic pressures that shaped the evolution of modern mathematical method.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Plans and Planning in Mathematical Proofs.Yacin Hamami & Rebecca Lea Morris - forthcoming - Review of Symbolic Logic:1-40.
    In practice, mathematical proofs are most often the result of careful planning by the agents who produced them. As a consequence, each mathematical proof inherits a plan in virtue of the way it is produced, a plan which underlies its “architecture” or “unity”. This paper provides an account of plans and planning in the context of mathematical proofs. The approach adopted here consists in looking for these notions not in mathematical proofs themselves, but in the agents who produced them. The (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Motivated Proofs: What They Are, Why They Matter and How to Write Them.Rebecca Lea Morris - 2020 - Review of Symbolic Logic 13 (1):23-46.
    Mathematicians judge proofs to possess, or lack, a variety of different qualities, including, for example, explanatory power, depth, purity, beauty and fit. Philosophers of mathematical practice have begun to investigate the nature of such qualities. However, mathematicians frequently draw attention to another desirable proof quality: being motivated. Intuitively, motivated proofs contain no "puzzling" steps, but they have received little further analysis. In this paper, I begin a philosophical investigation into motivated proofs. I suggest that a proof is motivated if and (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Modularity in Mathematics.Jeremy Avigad - 2020 - Review of Symbolic Logic 13 (1):47-79.
    In a wide range of fields, the word “modular” is used to describe complex systems that can be decomposed into smaller systems with limited interactions between them. This essay argues that mathematical knowledge can fruitfully be understood as having a modular structure and explores the ways in which modularity in mathematics is epistemically advantageous.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Character and Object.Rebecca Morris & Jeremy Avigad - 2016 - Review of Symbolic Logic 9 (3):480-510.
    In 1837, Dirichlet proved that there are infinitely many primes in any arithmetic progression in which the terms do not all share a common factor. Modern presentations of the proof are explicitly higher-order, in that they involve quantifying over and summing over Dirichlet characters, which are certain types of functions. The notion of a character is only implicit in Dirichlet’s original proof, and the subsequent history shows a very gradual transition to the modern mode of presentation. In this essay, we (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   9 citations