Switch to: References

Add citations

You must login to add citations.
  1. Probability in Biology: The Case of Fitness.Roberta L. Millstein - 2016 - In Alan Hájek & Christopher Hitchcock (eds.), The Oxford Handbook of Probability and Philosophy. Oxford: Oxford University Press. pp. 601-622.
    I argue that the propensity interpretation of fitness, properly understood, not only solves the explanatory circularity problem and the mismatch problem, but can also withstand the Pandora’s box full of problems that have been thrown at it. Fitness is the propensity (i.e., probabilistic ability, based on heritable physical traits) for organisms or types of organisms to survive and reproduce in particular environments and in particular populations for a specified number of generations; if greater than one generation, “reproduction” includes descendants of (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  • Indeterminism in neurobiology.Marcel Weber - 2005 - Philosophy of Science 72 (5):663-674.
    I examine different arguments that could be used to establish indeterminism of neurological processes. Even though scenarios where single events at the molecular level make the difference in the outcome of such processes are realistic, this falls short of establishing indeterminism, because it is not clear that these molecular events are subject to quantum mechanical uncertainty. Furthermore, attempts to argue for indeterminism autonomously (i.e., independently of quantum mechanics) fail, because both deterministic and indeterministic models can account for the empirically observed (...)
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Complex Nexus of Evolutionary Fitness.Mauricio Suárez - 2022 - European Journal for Philosophy of Science 12 (1):1-26.
    The propensity nature of evolutionary fitness has long been appreciated and is nowadays amply discussed. The discussion has, however, on occasion followed long standing conflations in the philosophy of probability literature between propensities, probabilities, and frequencies. In this paper, I apply a more recent conception of propensities in modelling practice to some of the key issues, regarding the mathematical representation of fitness and how it may be regarded as explanatory. The ensuing complex nexus of fitness emphasises the distinction between biological (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Locating uncertainty in stochastic evolutionary models: divergence time estimation.Charles H. Pence - 2019 - Biology and Philosophy 34 (2):21.
    Philosophers of biology have worked extensively on how we ought best to interpret the probabilities which arise throughout evolutionary theory. In spite of this substantial work, however, much of the debate has remained persistently intractable. I offer the example of Bayesian models of divergence time estimation as a case study in how we might bring further resources from the biological literature to bear on these debates. These models offer us an example in which a number of different sources of uncertainty (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Interpretation of Probability in Evolutionary Theory.Ryota Morimoto - 2009 - Kagaku Tetsugaku 42 (1):83-96.
  • Population and organismal perspectives on trait origins.Brian McLoone - 2020 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 83:101288.
  • Deterministic Probability: Neither chance nor credence.Aidan Lyon - 2011 - Synthese 182 (3):413-432.
    Some have argued that chance and determinism are compatible in order to account for the objectivity of probabilities in theories that are compatible with determinism, like Classical Statistical Mechanics (CSM) and Evolutionary Theory (ET). Contrarily, some have argued that chance and determinism are incompatible, and so such probabilities are subjective. In this paper, I argue that both of these positions are unsatisfactory. I argue that the probabilities of theories like CSM and ET are not chances, but also that they are (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   32 citations  
  • An explication of the causal dimension of drift.Peter Gildenhuys - 2009 - British Journal for the Philosophy of Science 60 (3):521-555.
    Among philosophers, controversy over the notion of drift in population genetics is ongoing. This is at least partly because the notion of drift has an ambiguous usage among population geneticists. My goal in this paper is to explicate the causal dimension of drift, to say what causal influences are responsible for the stochasticity in population genetics models. It is commonplace for population genetics to oppose the influence of selection to that of drift, and to consider how the dynamics of populations (...)
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  • Toward a propensity interpretation of stochastic mechanism for the life sciences.Lane DesAutels - 2015 - Synthese 192 (9):2921-2953.
    In what follows, I suggest that it makes good sense to think of the truth of the probabilistic generalizations made in the life sciences as metaphysically grounded in stochastic mechanisms in the world. To further understand these stochastic mechanisms, I take the general characterization of mechanism offered by MDC :1–25, 2000) and explore how it fits with several of the going philosophical accounts of chance: subjectivism, frequentism, Lewisian best-systems, and propensity. I argue that neither subjectivism, frequentism, nor a best-system-style interpretation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Chances and Propensities in Evo-Devo.Laura Nuño de la Rosa & Cristina Villegas - 2022 - British Journal for the Philosophy of Science 73 (2):509-533.
    While the notion of chance has been central in discussions over the probabilistic nature of natural selection and genetic drift, its role in the production of variants on which populational sampling takes place has received much less philosophical attention. This article discusses the concept of chance in evolution in the light of contemporary work in evo-devo. We distinguish different levels at which randomness and chance can be defined in this context, and argue that recent research on variability and evolvability demands (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • In What Sense Can There Be Evolution by Natural Selection Without Perfect Inheritance?Pierrick Bourrat - 2019 - International Studies in the Philosophy of Science 32 (1):13-31.
    ABSTRACTIn Darwinian Population and Natural Selection, Peter Godfrey-Smith brought the topic of natural selection back to the forefront of philosophy of biology, highlighting different issues surro...
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Explaining Drift from a Deterministic Setting.Pierrick Bourrat - 2017 - Biological Theory 12 (1):27-38.
    Drift is often characterized in statistical terms. Yet such a purely statistical characterization is ambiguous for it can accept multiple physical interpretations. Because of this ambiguity it is important to distinguish what sorts of processes can lead to this statistical phenomenon. After presenting a physical interpretation of drift originating from the most popular interpretation of fitness, namely the propensity interpretation, I propose a different one starting from an analysis of the concept of drift made by Godfrey-Smith. Further on, I show (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • On Probabilities in Biology and Physics.Joseph Berkovitz & Philippe Huneman - 2015 - Erkenntnis 80 (S3):433-456.
    This volume focuses on various questions concerning the interpretation of probability and probabilistic reasoning in biology and physics. It is inspired by the idea that philosophers of biology and philosophers of physics who work on the foundations of their disciplines encounter similar questions and problems concerning the role and application of probability, and that interaction between the two communities will be both interesting and fruitful. In this introduction we present the background to the main questions that the volume focuses on (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Infinite populations and counterfactual frequencies in evolutionary theory.Marshall Abrams - 2006 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 37 (2):256-268.
    One finds intertwined with ideas at the core of evolutionary theory claims about frequencies in counterfactual and infinitely large populations of organisms, as well as in sets of populations of organisms. One also finds claims about frequencies in counterfactual and infinitely large populations—of events—at the core of an answer to a question concerning the foundations of evolutionary theory. The question is this: To what do the numerical probabilities found throughout evolutionary theory correspond? The answer in question says that evolutionary probabilities (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • How Do Natural Selection and Random Drift Interact?Marshall Abrams - 2007 - Philosophy of Science 74 (5):666-679.
    One controversy about the existence of so called evolutionary forces such as natural selection and random genetic drift concerns the sense in which such “forces” can be said to interact. In this paper I explain how natural selection and random drift can interact. In particular, I show how population-level probabilities can be derived from individual-level probabilities, and explain the sense in which natural selection and drift are embodied in these population-level probabilities. I argue that whatever causal character the individual-level probabilities (...)
    Direct download (13 more)  
     
    Export citation  
     
    Bookmark   25 citations  
  • Fitness and Propensity’s Annulment?Marshall Abrams - 2007 - Biology and Philosophy 22 (1):115-130.
    Recent debate on the nature of probabilities in evolutionary biology has focused largely on the propensity interpretation of fitness (PIF), which defines fitness in terms of a conception of probability known as “propensity”. However, proponents of this conception of fitness have misconceived the role of probability in the constitution of fitness. First, discussions of probability and fitness have almost always focused on organism effect probability, the probability that an organism and its environment cause effects. I argue that much of the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  • Probability, Indeterminism and Biological Processes.Charlotte Werndl - 2012 - In D. Dieks, J. G. Wenceslao, Stephan Hartmann, Michael Stoeltzner & Marcel Weber (eds.), Probabilities, Laws, and Structures. Springer. pp. 263-277.
    Probability and indeterminism have always been core philosophical themes. This paper aims to contribute to understanding probability and indeterminism in biology. To provide the background for the paper, it will first be argued that an omniscient being would not need the probabilities of evolutionary theory to make predictions about biological processes. However, despite this, one can still be a realist about evolutionary theory, and then the probabilities in evolutionary theory refer to real features of the world. This prompts the question (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Objective and Subjective Probability in Gene Expression.Joel D. Velasco - 2012 - Progress in Biophysics and Molecular Biology 110:5-10.
    In this paper I address the question of whether the probabilities that appear in models of stochastic gene expression are objective or subjective. I argue that while our best models of the phenomena in question are stochastic models, this fact should not lead us to automatically assume that the processes are inherently stochastic. After distinguishing between models and reality, I give a brief introduction to the philosophical problem of the interpretation of probability statements. I argue that the objective vs. subjective (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Why It Is Time To Move Beyond Nagelian Reduction.Marie I. Kaiser - 2012 - In D. Dieks, W. J. Gonzalez, S. Hartmann, M. Stöltzner & M. Weber (eds.), Probabilities, Laws, and Structures. The Philosophy of Science in a European Perspective. Heidelberg, GER: Springer. pp. 255-272.
    In this paper I argue that it is finally time to move beyond the Nagelian framework and to break new ground in thinking about epistemic reduction in biology. I will do so, not by simply repeating all the old objections that have been raised against Ernest Nagel’s classical model of theory reduction. Rather, I grant that a proponent of Nagel’s approach can handle several of these problems but that, nevertheless, Nagel’s general way of thinking about epistemic reduction in terms of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Review of Toby Handfield, A Philosophical Guide to Chance. [REVIEW]Christopher J. G. Meacham - 2013 - Notre Dame Philosophical Reviews 2013.
    This is a review of Toby Handfield's book, "A Philosophical Guide to Chance", that discusses Handfield's Debunking Argument against realist accounts of chance.
    Direct download  
     
    Export citation  
     
    Bookmark