Switch to: References

Add citations

You must login to add citations.
  1. Evolution in Space and Time: The Second Synthesis of Ecology, Evolutionary Biology, and the Philosophy of Biology.Mitchell Ryan Distin - 2023 - Self-published because fuck the leeches of Big Publishing.
    Change is the fundamental idea of evolution. Explaining the extraordinary biological change we see written in the history of genomes and fossil beds is the primary occupation of the evolutionary biologist. Yet it is a surprising fact that for the majority of evolutionary research, we have rarely studied how evolution typically unfolds in nature, in changing ecological environments, over space and time. While ecology played a major role in the eventual acceptance of the population genetic viewpoint of evolution in the (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  • Natural Selection: A Case for the Counterfactual Approach. [REVIEW]Philippe Huneman - 2012 - Erkenntnis 76 (2):171-194.
    This paper investigates the conception of causation required in order to make sense of natural selection as a causal explanation of changes in traits or allele frequencies. It claims that under a counterfactual account of causation, natural selection is constituted by the causal relevance of traits and alleles to the variation in traits and alleles frequencies. The “statisticalist” view of selection (Walsh, Matthen, Ariew, Lewens) has shown that natural selection is not a cause superadded to the causal interactions between individual (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  • Probability in Biology: The Case of Fitness.Roberta L. Millstein - 2016 - In Alan Hájek & Christopher Hitchcock (eds.), The Oxford Handbook of Probability and Philosophy. Oxford: Oxford University Press. pp. 601-622.
    I argue that the propensity interpretation of fitness, properly understood, not only solves the explanatory circularity problem and the mismatch problem, but can also withstand the Pandora’s box full of problems that have been thrown at it. Fitness is the propensity (i.e., probabilistic ability, based on heritable physical traits) for organisms or types of organisms to survive and reproduce in particular environments and in particular populations for a specified number of generations; if greater than one generation, “reproduction” includes descendants of (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  • Precedent as a path laid down in walking: Grounding intrinsic normativity in a history of response.Joshua Rust - 2024 - Phenomenology and the Cognitive Sciences 23 (2):435-466.
    While developments of a shared intellectual tradition, the enactivist approach and the organizational account proffer importantly different accounts of organismic normativity. Where enactivists tend to follow Hans Jonas, Andres Weber, and Francisco Varela in grounding intrinsic affordance norms in existential concern, organizational theorists such as Alvaro Moreno, Matteo Mossio, and Leonardo Bich seek a more deflationary account of these normative phenomena. Critiques directed at both of these accounts of organismic normativity motivate the introduction of the precedential account of organismic normativity, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • La deriva genética como fuerza evolutiva.Ariel Jonathan Roffé - 2015 - In J. Ahumada, N. Venturelli & S. Seno Chibeni (eds.), Selección de Trabajos del IX Encuentro AFHIC y las XXV Jornadas de Epistemología e Historia de la ciencia. pp. 615-626.
    Direct download  
     
    Export citation  
     
    Bookmark  
  • The Functional Perspective of Organismal Biology.Arno Wouters - 2005 - In Thomas A. C. Reydon & Lia Hemerik (eds.), Current Themes in Theoretical Biology : A Dutch Perspective. Springer. pp. 33--69.
    Following Mayr (1961) evolutionary biologists often maintain that the hallmark of biology is its evolutionary perspective. In this view, biologists distinguish themselves from other natural scientists by their emphasis on why-questions. Why-questions are legitimate in biology but not in other natural sciences because of the selective character of the process by means of which living objects acquire their characteristics. For that reason, why-questions should be answered in terms of natural selection. Functional biology is seen as a reductionist science that applies (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • The Phylogeny Fallacy and Evolutionary Causation (preprint).Tiago Rama - manuscript
    Direct download  
     
    Export citation  
     
    Bookmark  
  • The mind, the lab, and the field: Three kinds of populations in scientific practice.Rasmus Grønfeldt Winther, Ryan Giordano, Michael D. Edge & Rasmus Nielsen - 2015 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 52:12-21.
    Scientists use models to understand the natural world, and it is important not to conflate model and nature. As an illustration, we distinguish three different kinds of populations in studies of ecology and evolution: theoretical, laboratory, and natural populations, exemplified by the work of R.A. Fisher, Thomas Park, and David Lack, respectively. Biologists are rightly concerned with all three types of populations. We examine the interplay between these different kinds of populations, and their pertinent models, in three examples: the notion (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  • Prediction in selectionist evolutionary theory.Rasmus Gr⊘Nfeldt Winther - 2009 - Philosophy of Science 76 (5):889-901.
    Selectionist evolutionary theory has often been faulted for not making novel predictions that are surprising, risky, and correct. I argue that it in fact exhibits the theoretical virtue of predictive capacity in addition to two other virtues: explanatory unification and model fitting. Two case studies show the predictive capacity of selectionist evolutionary theory: parallel evolutionary change in E. coli, and the origin of eukaryotic cells through endosymbiosis.
    Direct download (13 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Variance, Invariance and Statistical Explanation.D. M. Walsh - 2015 - Erkenntnis 80 (S3):469-489.
    The most compelling extant accounts of explanation casts all explanations as causal. Yet there are sciences, theoretical population biology in particular, that explain their phenomena by appeal to statistical, non-causal properties of ensembles. I develop a generalised account of explanation. An explanation serves two functions: metaphysical and cognitive. The metaphysical function is discharged by identifying a counterfactually robust invariance relation between explanans event and explanandum. The cognitive function is discharged by providing an appropriate description of this relation. I offer examples (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  • The pomp of superfluous causes: The interpretation of evolutionary theory.Denis M. Walsh - 2007 - Philosophy of Science 74 (3):281-303.
    There are two competing interpretations of the modern synthesis theory of evolution: the dynamical (also know as ‘traditional’) and the statistical. The dynamical interpretation maintains that explanations offered under the auspices of the modern synthesis theory articulate the causes of evolution. It interprets selection and drift as causes of population change. The statistical interpretation holds that modern synthesis explanations merely cite the statistical structure of populations. This paper offers a defense of statisticalism. It argues that a change in trait frequencies (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   107 citations  
  • Not a sure thing: Fitness, probability, and causation.Denis M. Walsh - 2010 - Philosophy of Science 77 (2):147-171.
    In evolutionary biology changes in population structure are explained by citing trait fitness distribution. I distinguish three interpretations of fitness explanations—the Two‐Factor Model, the Single‐Factor Model, and the Statistical Interpretation—and argue for the last of these. These interpretations differ in their degrees of causal commitment. The first two hold that trait fitness distribution causes population change. Trait fitness explanations, according to these interpretations, are causal explanations. The last maintains that trait fitness distribution correlates with population change but does not cause (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   56 citations  
  • Four Pillars of Statisticalism.Denis M. Walsh, André Ariew & Mohan Matthen - 2017 - Philosophy, Theory, and Practice in Biology 9 (1):1-18.
    Over the past fifteen years there has been a considerable amount of debate concerning what theoretical population dynamic models tell us about the nature of natural selection and drift. On the causal interpretation, these models describe the causes of population change. On the statistical interpretation, the models of population dynamics models specify statistical parameters that explain, predict, and quantify changes in population structure, without identifying the causes of those changes. Selection and drift are part of a statistical description of population (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   28 citations  
  • Environment as Abstraction.Denis Walsh - 2021 - Biological Theory 17 (1):68-79.
    The concept of the environment appears to be indispensably involved in adaptive explanation. Quite what its role is, however, is a matter of some dispute. The environment is customarily viewed as the dual of the organism; a wholly external, discrete, autonomous cause of evolution. On this view, the external environment is the principal cause of the adaptedness of form, and the determinant of what it is to be an adaptation. I argue that this conception of the environment neither adequately explains (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Descriptions and models: Some responses to Abrams.Denis M. Walsh - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (3):302-308.
  • Intrinsic estimates of fitness affect the causal structure of evolutionary change.J. H. van Hateren - 2015 - Biology and Philosophy 30 (5):729-746.
    The causal structure of Darwinian evolution by natural selection is investigated. Its basic scheme is reproduction resulting from a feedback loop driven by internal and external causes. Causation internal to the loop connects genotype, development, phenotype, and fitness, with environmental constraints on the latter preventing runaway reproduction. External causes driving the core loop are environmental change and genetic change. This basic causal structure is complicated by modern additions such as control of mutation rate, niche construction, interactions between evolution and development, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • A Conceptual Analysis of Evolutionary Theory for Teacher Education.Esther M. van Dijk & Thomas A. C. Reydon - 2010 - Science & Education 19 (6-8):655-677.
  • How much can we know about the causes of evolutionary trends?Derek D. Turner - 2009 - Biology and Philosophy 24 (3):341-357.
    One of the first questions that paleontologists ask when they identify a large-scale trend in the fossil record (e.g., size increase, complexity increase) is whether it is passive or driven. In this article, I explore two questions about driven trends: (1) what is the underlying cause or source of the directional bias? and (2) has the strength of the directional bias changed over time? I identify two underdetermination problems that prevent scientists from giving complete answers to these two questions.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  • Towards a characterization of metaphysics of biology: metaphysics for and metaphysics in biology.Vanesa Triviño - 2022 - Synthese 200 (5):1-21.
    Since the last decades of the twentieth and the beginning of the twenty-first century, the use of metaphysics by philosophers when approaching conceptual problems in biology has increased. Some philosophers call this tendency in philosophy of biology ‘Metaphysics of Biology’. In this paper, I aim at characterizing Metaphysics of Biology by paying attention to the diverse ways philosophers use metaphysics when addressing conceptual problems in biology. I will claim that there are two different modes of doing Metaphysics of Biology, namely (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • A causal dispositional account of fitness.Laura Nuño de la Rosa & Vanessa Triviño - 2016 - History and Philosophy of the Life Sciences 38 (3).
    The notion of fitness is usually equated to reproductive success. However, this actualist approach presents some difficulties, mainly the explanatory circularity problem, which have lead philosophers of biology to offer alternative definitions in which fitness and reproductive success are distinguished. In this paper, we argue that none of these alternatives is satisfactory and, inspired by Mumford and Anjum’s dispositional theory of causation, we offer a definition of fitness as a causal dispositional property. We argue that, under this framework, the distinctiveness (...)
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Current Status of the Philosophy of Biology.Peter Takacs & Michael Ruse - 2013 - Science & Education 22 (1):5-48.
  • The arithmetic mean of what? A Cautionary Tale about the Use of the Geometric Mean as a Measure of Fitness.Peter Takacs & Pierrick Bourrat - 2022 - Biology and Philosophy 37 (2):1-22.
    Showing that the arithmetic mean number of offspring for a trait type often fails to be a predictive measure of fitness was a welcome correction to the philosophical literature on fitness. While the higher mathematical moments of a probability-weighted offspring distribution can influence fitness measurement in distinct ways, the geometric mean number of offspring is commonly singled out as the most appropriate measure. For it is well-suited to a compounding process and is sensitive to variance in offspring number. The geometric (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Two-Dimensional Semantics.Peter Sutton - 2008 - Philosophical Review 117 (4):637-639.
  • The Complex Nexus of Evolutionary Fitness.Mauricio Suárez - 2022 - European Journal for Philosophy of Science 12 (1):1-26.
    The propensity nature of evolutionary fitness has long been appreciated and is nowadays amply discussed. The discussion has, however, on occasion followed long standing conflations in the philosophy of probability literature between propensities, probabilities, and frequencies. In this paper, I apply a more recent conception of propensities in modelling practice to some of the key issues, regarding the mathematical representation of fitness and how it may be regarded as explanatory. The ensuing complex nexus of fitness emphasises the distinction between biological (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • What can natural selection explain?Ulrich E. Stegmann - 2010 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 41 (1):61-66.
    One approach to assess the explanatory power of natural selection is to ask what type of facts it can explain. The standard list of explananda includes facts like trait frequencies or the survival of particular organisms. Here, I argue that this list is incomplete: natural selection can also explain a specific kind of individual-level fact that involves traits. The ability of selection to explain this sort of fact vindicates the explanatory commitments of empirical studies on microevolution. Trait facts must be (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  • Selection, drift, and the “forces” of evolution.Christopher Stephens - 2004 - Philosophy of Science 71 (4):550-570.
    Recently, several philosophers have challenged the view that evolutionary theory is usefully understood by way of an analogy with Newtonian mechanics. Instead, they argue that evolutionary theory is merely a statistical theory. According to this alternate approach, natural selection and random genetic drift are not even causes, much less forces. I argue that, properly understood, the Newtonian analogy is unproblematic and illuminating. I defend the view that selection and drift are causes in part by attending to a pair of important (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   95 citations  
  • “Population” Is Not a Natural Kind of Kinds.Jacob Stegenga - 2010 - Biological Theory 5 (2):154-160.
    Millstein (2009) argues against conceptual pluralism with respect to the definition of “population,” and proposes her own definition of the term. I challenge both Millstein's negative arguments against conceptual pluralism and her positive proposal for a singular definition of population. The concept of population, I argue, does not refer to a natural kind; populations are constructs of biologists variably defined by contexts of inquiry.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • “Population” Is Not a Natural Kind of Kinds.Jacob Stegenga - 2010 - Biological Theory 5 (2):154-160.
    Millstein argues against conceptual pluralism with respect to the definition of “population,” and proposes her own definition of the term. I challenge both Millstein’s negative arguments against conceptual pluralism and her positive proposal for a singular definition of population. The concept of population, I argue, does not refer to a natural kind; popula tions are constructs of biologists variably defined by contexts of inquiry.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Popper’s Shifting Appraisal of Evolutionary Theory.Elliott Sober & Mehmet Elgin - 2017 - Hopos: The Journal of the International Society for the History of Philosophy of Science 7 (1):31-55.
    Karl Popper argued in 1974 that evolutionary theory contains no testable laws and is therefore a metaphysical research program. Four years later, he said that he had changed his mind. Here we seek to understand Popper’s initial position and his subsequent retraction. We argue, contrary to Popper’s own assessment, that he did not change his mind at all about the substance of his original claim. We also explore how Popper’s views have ramifications for contemporary discussion of the nature of laws (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Natural Kindness.Matthew H. Slater - 2015 - British Journal for the Philosophy of Science 66 (2):375-411.
    Philosophers have long been interested in a series of interrelated questions about natural kinds. What are they? What role do they play in science and metaphysics? How do they contribute to our epistemic projects? What categories count as natural kinds? And so on. Owing, perhaps, to different starting points and emphases, we now have at hand a variety of conceptions of natural kinds—some apparently better suited than others to accommodate a particular sort of inquiry. Even if coherent, this situation isn’t (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   116 citations  
  • Roles of mitonuclear ecology and sex in conceptualizing evolutionary fitness.Elay Shech & Kyle B. Heine - 2021 - Biology and Philosophy 36 (3):1-20.
    We look to mitonuclear ecology and the phenomenon of Mother’s Curse to argue that the sex of parents and offspring among populations of eukaryotic organisms, as well as the mitochondrial genome, ought to be taken into account in the conceptualization of evolutionary fitness. Subsequently, we show how characterizations of fitness considered by philosophers that do not take sex and the mitochondrial genome into account may suffer. Last, we reflect on the debate regarding the fundamentality of trait versus organism fitness and (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Current Perspectives in Philosophy of Biology.Joaquin Suarez Ruiz & Rodrigo A. Lopez Orellana - 2019 - Humanities Journal of Valparaiso 14:7-426.
    Current Perspectives in Philosophy of Biology.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  • How Jerry Fodor slid down the slippery slope to Anti-Darwinism, and how we can avoid the same fate.Alex Rosenberg - 2013 - European Journal for Philosophy of Science 3 (1):1-17.
    There is only one physically possible process that builds and operates purposive systems in nature: natural selection. What it does is build and operate systems that look to us purposive, goal directed, teleological. There really are not any purposes in nature and no purposive processes ether. It is just one vast network of linked causal chains. Darwinian natural selection is the only process that could produce the appearance of purpose. That is why natural selection must have built and must continually (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • El estatus metateórico de ZFEL.Ariel Jonathan Roffé & Santiago Ginnobili - 2019 - Humanities Journal of Valparaiso 14:57-73.
    En un libro reciente McShea y Brandon defienden que la diversidad y la complejidad de la vida se explican, principalmente, por la acción de un principio que llaman “la ley evolutiva de fuerzas cero” o “ZFEL”. Tal principio actuaría de un modo implícito por detrás de muchas explicaciones de la biología, pero nunca habría sido explicitado. Asumiendo que esta idea es interesante, y que los autores en cuestión tienen razón, discutiremos el modo metateórico en que presentan dicho principio, como siendo (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Drift as constitutive: conclusions from a formal reconstruction of population genetics.Ariel Jonathan Roffé - 2019 - History and Philosophy of the Life Sciences 41 (4):55.
    This article elaborates on McShea and Brandon’s idea that drift is unlike the rest of the evolutionary factors because it is constitutive rather than imposed on the evolutionary process. I show that the way they spelled out this idea renders it inadequate and is the reason why it received some objections. I propose a different way in which their point could be understood, that rests on two general distinctions. The first is a distinction between the underlying mathematical apparatus used to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Drift as constitutive: conclusions from a formal reconstruction of population genetics.Ariel Jonathan Roffé - 2019 - History and Philosophy of the Life Sciences 41 (4):1-24.
    This article elaborates on McShea and Brandon’s idea that drift is unlike the rest of the evolutionary factors because it is constitutive rather than imposed on the evolutionary process. I show that the way they spelled out this idea renders it inadequate and is the reason why it received some objections. I propose a different way in which their point could be understood, that rests on two general distinctions. The first is a distinction between the underlying mathematical apparatus used to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Genetic drift as a directional factor: biasing effects and a priori predictions.Ariel Jonathan Roffé - 2017 - Biology and Philosophy 32 (4):535-558.
    The adequacy of Elliott Sober’s analogy between classical mechanics and evolutionary theory—according to which both theories explain via a zero-force law and a set of forces that alter the zero-force state—has been criticized from various points of view. I focus here on McShea and Brandon’s claim that drift shouldn’t be considered a force because it is not directional. I argue that there are a number of different theses that could be meant by this, and show that one of those theses—the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • (Mis)interpreting Mathematical Models: Drift as a Physical Process.Michael R. Dietrich, Robert A. Skipper Jr & Roberta L. Millstein - 2009 - Philosophy, Theory, and Practice in Biology 1 (20130604):e002.
    Recently, a number of philosophers of biology have endorsed views about random drift that, we will argue, rest on an implicit assumption that the meaning of concepts such as drift can be understood through an examination of the mathematical models in which drift appears. They also seem to implicitly assume that ontological questions about the causality of terms appearing in the models can be gleaned from the models alone. We will question these general assumptions by showing how the same equation (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   26 citations  
  • Moving Beyond Causes: Optimality Models and Scientific Explanation.Collin Rice - 2013 - Noûs 49 (3):589-615.
    A prominent approach to scientific explanation and modeling claims that for a model to provide an explanation it must accurately represent at least some of the actual causes in the event's causal history. In this paper, I argue that many optimality explanations present a serious challenge to this causal approach. I contend that many optimality models provide highly idealized equilibrium explanations that do not accurately represent the causes of their target system. Furthermore, in many contexts, it is in virtue of (...)
    Direct download  
     
    Export citation  
     
    Bookmark   93 citations  
  • Explanatory schema and the process of model building.Collin Rice, Yasha Rohwer & André Ariew - 2019 - Synthese 196 (11):4735-4757.
    In this paper, we argue that rather than exclusively focusing on trying to determine if an idealized model fits a particular account of scientific explanation, philosophers of science should also work on directly analyzing various explanatory schemas that reveal the steps and justification involved in scientists’ use of highly idealized models to formulate explanations. We develop our alternative methodology by analyzing historically important cases of idealized statistical modeling that use a three-step explanatory schema involving idealization, mathematical operation, and explanatory interpretation.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Misconceptions, conceptual pluralism, and conceptual toolkits: bringing the philosophy of science to the teaching of evolution.Thomas A. C. Reydon - 2021 - European Journal for Philosophy of Science 11 (2):1-23.
    This paper explores how work in the philosophy of science can be used when teaching scientific content to science students and when training future science teachers. I examine the debate on the concept of fitness in biology and in the philosophy of biology to show how conceptual pluralism constitutes a problem for the conceptual change model, and how philosophical work on conceptual clarification can be used to address that problem. The case of fitness exemplifies how the philosophy of science offers (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Probabilistic causation and the explanatory role of natural selection.Pablo Razeto-Barry & Ramiro Frick - 2011 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 42 (3):344-355.
  • Probabilistic causation and the explanatory role of natural selection.Pablo Razeto-Barry & Ramiro Frick - 2011 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 42 (3):344-355.
    The explanatory role of natural selection is one of the long-term debates in evolutionary biology. Nevertheless, the consensus has been slippery because conceptual confusions and the absence of a unified, formal causal model that integrates different explanatory scopes of natural selection. In this study we attempt to examine two questions: (i) What can the theory of natural selection explain? and (ii) Is there a causal or explanatory model that integrates all natural selection explananda? For the first question, we argue that (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  • The Causal Structure of Evolutionary Theory.Grant Ramsey - 2016 - Australasian Journal of Philosophy 94 (3):421-434.
    One contentious debate in the philosophy of biology is that between the statisticalists and causalists. The former understand core evolutionary concepts like fitness and selection to be mere statistical summaries of underlying causal processes. In this view, evolutionary changes cannot be causally explained by selection or fitness. The causalist side, on the other hand, holds that populations can change in response to selection—one can cite fitness differences or driftability in causal explanations of evolutionary change. But, on the causalist side, it (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • Organisms, Traits, and Population Subdivisions: Two Arguments against the Causal Conception of Fitness?Grant Ramsey - 2013 - British Journal for the Philosophy of Science 64 (3):589-608.
    A major debate in the philosophy of biology centers on the question of how we should understand the causal structure of natural selection. This debate is polarized into the causal and statistical positions. The main arguments from the statistical side are that a causal construal of the theory of natural selection's central concept, fitness, either (i) leads to inaccurate predictions about population dynamics, or (ii) leads to an incoherent set of causal commitments. In this essay, I argue that neither the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Organisms, Traits, and Population Subdivisions: Two Arguments against the Causal Conception of Fitness?Grant30 Ramsey - 2013 - British Journal for the Philosophy of Science 64 (3):589-608.
    A major debate in the philosophy of biology centers on the question of how we should understand the causal structure of natural selection. This debate is polarized into the causal and statistical positions. The main arguments from the statistical side are that a causal construal of the theory of natural selection's central concept, fitness, either (i) leads to inaccurate predictions about population dynamics, or (ii) leads to an incoherent set of causal commitments. In this essay, I argue that neither the (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Driftability.Grant Ramsey - 2013 - Synthese 190 (17):3909-3928.
    In this paper, I argue (contra some recent philosophical work) that an objective distinction between natural selection and drift can be drawn. I draw this distinction by conceiving of drift, in the most fundamental sense, as an individual-level phenomenon. This goes against some other attempts to distinguish selection from drift, which have argued either that drift is a population-level process or that it is a population-level product. Instead of identifying drift with population-level features, the account introduced here can explain these (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  • Can fitness differences be a cause of evolution?Grant Ramsey - 2013 - Philosophy, Theory, and Practice in Biology 5 (20130604):1-13.
    Biological fitness is a foundational concept in the theory of natural selection. Natural selection is often defined in terms of fitness differences as “any consistent difference in fitness (i.e., survival and reproduction) among phenotypically different biological entities” (Futuyma 1998, 349). And in Lewontin’s (1970) classic articulation of the theory of natural selection, he lists fitness differences as one of the necessary conditions for evolution by natural selection to occur. Despite this foundational position of fitness, there remains much debate over the (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Block Fitness.Grant Ramsey - 2006 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 37 (3):484-498.
    There are three related criteria that a concept of fitness should be able to meet: it should render the principle of natural selection non-tautologous and it should be explanatory and predictive. I argue that for fitness to be able to fulfill these criteria, it cannot be a property that changes over the course of an individual's life. Rather, I introduce a fitness concept--Block Fitness--and argue that an individual's genes and environment fix its fitness in such a way that each individual's (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   32 citations  
  • Genetic variance–covariance matrices: A critique of the evolutionary quantitative genetics research program.Massimo Pigliucci - 2006 - Biology and Philosophy 21 (1):1-23.
    This paper outlines a critique of the use of the genetic variance–covariance matrix (G), one of the central concepts in the modern study of natural selection and evolution. Specifically, I argue that for both conceptual and empirical reasons, studies of G cannot be used to elucidate so-called constraints on natural selection, nor can they be employed to detect or to measure past selection in natural populations – contrary to what assumed by most practicing biologists. I suggest that the search for (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations