Switch to: References

Add citations

You must login to add citations.
  1. Trajectory Interpretation of Correspondence Principle: Solution of Nodal Issue.Ciann-Dong Yang & Shiang-Yi Han - 2020 - Foundations of Physics 50 (9):960-976.
    The correspondence principle states that the quantum system will approach the classical system in high quantum numbers. Indeed, the average of the quantum probability density distribution reflects a classical-like distribution. However, the probability of finding a particle at the node of the wave function is zero. This condition is recognized as the nodal issue. In this paper, we propose a solution for this issue by means of complex quantum random trajectories, which are obtained by solving the stochastic differential equation derived (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Relativistic Bohmian Trajectories and Klein-Gordon Currents for Spin-0 Particles.M. Alkhateeb & A. Matzkin - 2022 - Foundations of Physics 52 (5):1-13.
    It is generally believed that the de Broglie-Bohm model does not admit a particle interpretation for massive relativistic spin-0 particles, on the basis that particle trajectories cannot be defined. We show this situation is due to the fact that in the standard representation of the Klein-Gordon equation the wavefunction systematically contains superpositions of particle and anti-particle contributions. We argue that by working in a Foldy-Wouthuysen type representation uncoupling the particle from the anti-particle evolutions, a positive conserved density for a particle (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark