Citations of:
Add citations
You must login to add citations.
|
|
In this paper, I present a novel paradox that pertains to a variety of representational states and activities. I begin by proving that there are certain contingently true propositions that no one can occurrently believe. Then, I use this to develop a further proof by which I derive a contradiction, thus giving us the paradox. Next, I differentiate the paradox from the Liar Paradox, and I show how a common response to the different variations of the Liar Paradox fails to (...) No categories |
|
It is commonly held that the ascription of truth to a sentence is intersubstitutable with that very sentence. However, the simplest subclassical logics available to proponents of this view, namely K3 and LP, are hopelessly weak for many purposes. In this article, I argue that this is much more of a problem for proponents of LP than for proponents of K3. The strategies for recapturing classicality offered by proponents of LP are far less promising than those available to proponents of (...) |
|
Logic: the Basics is an accessible introduction to the core philosophy topic of standard logic. Focussing on traditional Classical Logic the book deals with topics such as mathematical preliminaries, propositional logic, monadic quantified logic, polyadic quantified logic, and English and standard ‘symbolic transitions’. With exercises and sample answers throughout this thoroughly revised new edition not only comprehensively covers the core topics at introductory level but also gives the reader an idea of how they can take their knowledge further and the (...) |
|
The volume includes twenty-five research papers presented as gifts to John L. Bell to celebrate his 60th birthday by colleagues, former students, friends and admirers. Like Bell’s own work, the contributions cross boundaries into several inter-related fields. The contributions are new work by highly respected figures, several of whom are among the key figures in their fields. Some examples: in foundations of maths and logic ; analytical philosophy, philosophy of science, philosophy of mathematics and decision theory and foundations of economics. (...) No categories |
|
A lot has been written on solutions to the semantic paradoxes, but very little on the topic of general theories of paradoxicality. The reason for this, we believe, is that it is not easy to disentangle a solution to the paradoxes from a specific conception of what those paradoxes consist in. This paper goes some way towards remedying this situation. We first address the question of what one should expect from an account of paradoxicality. We then present one conception of (...) No categories |
|
The recent development and exploration of mixed metainferential logics is a breakthrough in our understanding of nontransitive and nonreflexive logics. Moreover, this exploration poses a new challenge to theorists like me, who have appealed to similarities to classical logic in defending the logic ST, since some mixed metainferential logics seem to bear even more similarities to classical logic than ST does. There is a whole ST-based hierarchy, of which ST itself is only the first step, that seems to become more (...) |
|
Uncut is a book about two kinds of paradoxes: paradoxes involving truth and its relatives, like the liar paradox, and paradoxes involving vagueness. There are lots of ways to look at these paradoxes, and lots of puzzles generated by them, and Uncut ignores most of this variety to focus on a single issue. That issue: do our words mean what they seem to mean, and if so, how can this be? I claim that our words do mean what they seem (...) No categories |
|
Call a quantifier ‘unrestricted’ if it ranges over absolutely all objects. Arguably, unrestricted quantification is often presupposed in philosophical inquiry. However, developing a semantic theory that vindicates unrestricted quantification proves rather difficult, at least as long as we formulate our semantic theory within a classical first-order language. It has been argued that using a type theory as framework for our semantic theory provides a resolution of this problem, at least if a broadly Fregean interpretation of type theory is assumed. However, (...) |
|
|
|
This article introduces, studies, and applies a new system of logic which is called ‘HYPE’. In HYPE, formulas are evaluated at states that may exhibit truth value gaps and truth value gluts. Simple and natural semantic rules for negation and the conditional operator are formulated based on an incompatibility relation and a partial fusion operation on states. The semantics is worked out in formal and philosophical detail, and a sound and complete axiomatization is provided both for the propositional and the (...) |
|
|
|
|
|
In this paper we explain our pretense account of truth-talk and apply it in a diagnosis and treatment of the Liar Paradox. We begin by assuming that some form of deflationism is the correct approach to the topic of truth. We then briefly motivate the idea that all T-deflationists should endorse a fictionalist view of truth-talk, and, after distinguishing pretense-involving fictionalism (PIF) from error- theoretic fictionalism (ETF), explain the merits of the former over the latter. After presenting the basic framework (...) |
|
This article contains an overview of the main problems, themes and theories relating to the semantic paradoxes in the twentieth century. From this historical overview I tentatively draw some lessons about the way in which the field may evolve in the next decade. |
|
This paper aims to argue for two related statements: first, that formal semantics should not be conceived of as interpreting natural language expressions in a single model (a very large one representing the world as a whole, or something like that) but as interpreting them in many different models (formal counterparts, say, of little fragments of reality); second, that accepting such a conception of formal semantics yields a better comprehension of the relation between semantics and pragmatics and of the role (...) |
|
|
|
|
|
The paper explores applications of Kripke's theory of truth to semantics for anti-luck epistemology, that is, to subjunctive theories of knowledge. Subjunctive theories put forward modal or subjunctive conditions to rule out knowledge by mere luck as to be found in Gettier-style counterexamples to the analysis of knowledge as justified true belief. Because of the subjunctive nature of these conditions the resulting semantics turns out to be non-monotone, even if it is based on non-classical evaluation schemes such as strong Kleene (...) |
|
I apply the notions of alethic reference introduced in previous work in the construction of several classical semantic truth theories. Furthermore, I provide proof-theoretic versions of those notions and use them to formulate axiomatic disquotational truth systems over classical logic. Some of these systems are shown to be sound, proof-theoretically strong, and compare well to the most renowned systems in the literature. |
|
|
|
One of the main logical functions of the truth predicate is to enable us to express so-called ‘infinite conjunctions’. Several authors claim that the truth predicate can serve this function only if it is fully disquotational, which leads to triviality in classical logic. As a consequence, many have concluded that classical logic should be rejected. The purpose of this paper is threefold. First, we consider two accounts available in the literature of what it means to express infinite conjunctions with a (...) |
|
There has been much debate recently as to whether the notion of truth, as applied to one's home language, is metaphysically neutral, the interesting metaphysical questions arising elsewhere (in relation to such notions as mind-independence or objectivity or existence). ' On one side, the minimalists, as they have come to be known, favour deflationary accounts of truth such as the redundancy or disquotational theories and conclude that the notion of truth is applicable to declarative sentences in general - at least (...) |
|
In Saving Truth from Paradox, Hartry Field presents and defends a theory of truth with a new conditional. In this paper, I present two criticisms of this theory, one concerning its assessments of validity and one concerning its treatment of truth-preservation claims. One way of adjusting the theory adequately responds to the truth-preservation criticism, at the cost of making the validity criticism worse. I show that in a restricted setting, Field has a way to respond to the validity criticism. I (...) |
|
In this paper, we distinguish two versions of Curry's paradox: c-Curry, the standard conditional-Curry paradox, and v-Curry, a validity-involving version of Curry's paradox that isn’t automatically solved by solving c-curry. A unified treatment of curry paradox thus calls for a unified treatment of both c-Curry and v-Curry. If, as is often thought, c-Curry paradox is to be solved via non-classical logic, then v-Curry may require a lesson about the structure—indeed, the substructure—of the validity relation itself. |
|
Michael Kremer defines fixed-point logics of truth based on Saul Kripke’s fixed point semantics for languages expressing their own truth concepts. Kremer axiomatizes the strong Kleene fixed-point logic of truth and the weak Kleene fixed-point logic of truth, but leaves the axiomatizability question open for the supervaluation fixed-point logic of truth and its variants. We show that the principal supervaluation fixed point logic of truth, when thought of as consequence relation, is highly complex: it is not even analytic. We also (...) |
|
We investigate axiomatizations of Kripke's theory of truth based on the Strong Kleene evaluation scheme for treating sentences lacking a truth value. Feferman's axiomatization KF formulated in classical logic is an indirect approach, because it is not sound with respect to Kripke's semantics in the straightforward sense: only the sentences that can be proved to be true in KF are valid in Kripke's partial models. Reinhardt proposed to focus just on the sentences that can be proved to be true in (...) |
|
|
|
|
|
|
|
Kremer presented three approaches of comparing fixed-point and revision theories of truth in Kremer, 363–403, 2009). Using these approaches, he established the relationships among ten fixed-point theories suggested by Kripke in, 690–716, 1975) and three revision theories presented by Gupta and Belnap in. This paper continues Kremer’s work. We add five other revision theories to the comparisons, including the theory proposed by Gupta in, 1–60, 1982), the theory proposed by Herzberger in, 61–102, 1982), the theory based on fully-varied revision sequences (...) |
|
Propositions are central to at least most theorizing about the connection between our mental lives and the world: we use them in our theories of an array of attitudes including belief, desire, hope, fear, knowledge, and understanding. Unfortunately, when we press on these theories, we encounter a relatively neglected family of paradoxes first studied by Arthur Prior. I argue that these paradoxes present a fatal problem for most familiar resolutions of paradoxes. In particular, I argue that truth-value gap, contextualist, situation (...) No categories |
|
Kripke’s theory of truth is arguably the most influential approach to self-referential truth and the semantic paradoxes. The use of a partial evaluation scheme is crucial to the theory and the most prominent schemes that are adopted are the strong Kleene and the supervaluation scheme. The strong Kleene scheme is attractive because it ensures the compositionality of the notion of truth. But under the strong Kleene scheme classical tautologies do not, in general, turn out to be true and, as a (...) |
|
Two periods in the history of logic and philosophy are characterized notably by vivid interest in self-referential paradoxical sentences in general, and Liar sentences in particular: the later medieval period (roughly from the 12th to the 15th century) and the last 100 years. In this paper, I undertake a comparative taxonomy of these two traditions. I outline and discuss eight main approaches to Liar sentences in the medieval tradition, and compare them to the most influential modern approaches to such sentences. (...) |
|
|
|
The general thesis of this paper is that metasemantic theories can play a central role in determining the correct solution to the liar paradox. I argue for the thesis by providing a specific example. I show how Lewis’s reference-magnetic metasemantic theory may decide between two of the most influential solutions to the liar paradox: Kripke’s minimal fixed point theory of truth and Gupta and Belnap’s revision theory of truth. In particular, I suggest that Lewis’s metasemantic theory favours Kripke’s solution to (...) |
|
This is the second part of a paper dealing with truth and translation. In Part A a revised version of Tarski's Convention T has been presented, which explicitly refers to a translation mapping from the object language to the metalanguage; the vague notion of a translation has been replaced by a precise definition. At the end of Part A it has been shown that interpreted languages exist, which allow for vicious self-reference but which nevertheless contain their own truth predicate - (...) |
|
The ideas of fixed points (Kripke in Recent essays on truth and the liar paradox. Clarendon Press, London, pp 53–81, 1975; Martin and Woodruff in Recent essays on truth and the liar paradox. Clarendon Press, London, pp 47–51, 1984) and revision sequences (Gupta and Belnap in The revision theory of truth. MIT, London, 1993; Gupta in The Blackwell guide to philosophical logic. Blackwell, London, pp 90–114, 2001) have been exploited to provide solutions to the semantic paradox and have achieved admirable (...) |
|
The general notions of object- and metalanguage are discussed and as a special case of this relation an arbitrary first order language with an infinite model is expanded by a predicate symbol T0 which is interpreted as truth predicate for . Then the expanded language is again augmented by a new truth predicate T1 for the whole language plus T0. This process is iterated into the transfinite to obtain the Tarskian hierarchy of languages. It is shown that there are natural (...) |
|
A theory of the transfinite Tarskian hierarchy of languages is outlined and compared to a notion of partial truth by Kripke. It is shown that the hierarchy can be embedded into Kripke's minimal fixed point model. From this results on the expressive power of both approaches are obtained. |
|
We show how to construct certain L M, T -type interpreted languages, with each such language containing meaningfulness and truth predicates which apply to itself. These languages are comparable in expressive power to the L T -type, truth-theoretic languages first considered by Kripke, yet each of our L M, T -type languages possesses the additional advantage that, within it, the meaninglessness of any given meaningless expression can itself be meaningfully expressed. One therefore has, for example, the object level truth (and (...) |
|
In this paper, we define some consequence relations based on supervaluation semantics for partial models, and we investigate their properties. For our main consequence relation, we show that natural versions of the following fail: upwards and downwards Lowenheim-Skolem, axiomatizability, and compactness. We also consider an alternate version for supervaluation semantics, and show both axiomatizability and compactness for the resulting consequence relation. |
|
In a lengthy review article, C. Anthony Anderson criticizes the approach to property theory developed in Quality and Concept (1982). That approach is first-order, type-free, and broadly Russellian. Anderson favors Alonzo Church’s higher-order, type-theoretic, broadly Fregean approach. His worries concern the way in which the theory of intensional entities is developed. It is shown that the worries can be handled within the approach developed in the book but they remain serious obstacles for the Church approach. The discussion focuses on: (1) (...) |
|
We introduce a subclass of Kripke's fixed points in which falsehood is the preferred truth value. In all of these the truthteller evaluates to false, while the liar evaluates to undefined (or overdefined). The mathematical structure of this family of fixed points is investigated and is shown to have many nice features. It is noted that a similar class of fixed points, preferring truth, can also be studied. The notion of intrinsic is shown to relativize to these two subclasses. The (...) |
|
Kripke's theory of partial truth offers a natural solution of the Liar paradox and an appealing explanation of why the Liar sentence seems to lack definite content. It seems vulnerable, however, to... |
|
The aim of this paper is to give a certain algebraic account of truth: we want to define what we mean by De Morgan-valued truth models and show their existence even in the case of semantical closure: that is, languages may contain their own truth predicate if they are interpreted by De Morgan-valued models. Before we can prove this result, we have to repeat some basic facts concerning De Morgan-valued models in general, and we will introduce a notion of truth (...) |
|
|
|
Infectious logics are systems that have a truth-value that is assigned to a compound formula whenever it is assigned to one of its components. This paper studies four-valued infectious logics as the basis of transparent theories of truth. This take is motivated as a way to treat different pathological sentences differently, namely, by allowing some of them to be truth-value gluts and some others to be truth-value gaps and as a way to treat the semantic pathology suffered by at least (...) |
|
The Embracing Revenge account of semantic paradox avoids the expressive limitations of previous approaches based on the Kripkean fixed point construction by replacing a single language with an indefinitely extensible sequence of languages, each of which contains the resources to fully characterize the semantics of the previous languages. In this paper we extend the account developed in Cook, Cook, Schlenker, and Tourville and Cook via the addition of intensional operators such as ``is paradoxical''. In this extended framework we are able (...) |
|
In The Revision Theory of Truth (MIT Press), Gupta and Belnap (1993) claim as an advantage of their approach to truth "its consequence that truth behaves like an ordinary classical concept under certain conditions—conditions that can roughly be characterized as those in which there is no vicious reference in the language." To clarify this remark, they define Thomason models, nonpathological models in which truth behaves like a classical concept, and investigate conditions under which a model is Thomason: they argue that (...) |