Switch to: References

Add citations

You must login to add citations.
  1. Upper bounds for the arithmetical degrees.M. Lerman - 1985 - Annals of Pure and Applied Logic 29 (3):225-254.
  • Computability-theoretic complexity of countable structures.Valentina S. Harizanov - 2002 - Bulletin of Symbolic Logic 8 (4):457-477.
    Computable model theory, also called effective or recursive model theory, studies algorithmic properties of mathematical structures, their relations, and isomorphisms. These properties can be described syntactically or semantically. One of the major tasks of computable model theory is to obtain, whenever possible, computability-theoretic versions of various classical model-theoretic notions and results. For example, in the 1950's, Fröhlich and Shepherdson realized that the concept of a computable function can make van der Waerden's intuitive notion of an explicit field precise. This led (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Bounding Homogeneous Models.Barbara F. Csima, Valentina S. Harizanov, Denis R. Hirschfeldt & Robert I. Soare - 2007 - Journal of Symbolic Logic 72 (1):305 - 323.
    A Turing degree d is homogeneous bounding if every complete decidable (CD) theory has a d-decidable homogeneous model A, i.e., the elementary diagram De (A) has degree d. It follows from results of Macintyre and Marker that every PA degree (i.e., every degree of a complete extension of Peano Arithmetic) is homogeneous bounding. We prove that in fact a degree is homogeneous bounding if and only if it is a PA degree. We do this by showing that there is a (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Solovay's theorem cannot be simplified.Andrew Arana - 2001 - Annals of Pure and Applied Logic 112 (1):27-41.
    In this paper we consider three potential simplifications to a result of Solovay’s concerning the Turing degrees of nonstandard models of arbitrary completions of first-order Peano Arithmetic (PA). Solovay characterized the degrees of nonstandard models of completions T of PA, showing that they are the degrees of sets X such that there is an enumeration R ≤T X of an “appropriate” Scott set and there is a family of functions (tn)n∈ω, ∆0 n(X) uniformly in n, such that lim tn(s) s→∞.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations