Switch to: References

Add citations

You must login to add citations.
  1. Computation and Multiple Realizability.Marcin Miłkowski - 2016 - In Vincent C. Müller (ed.), Fundamental Issues of Artificial Intelligence. Cham: Springer. pp. 29-41.
    Multiple realizability (MR) is traditionally conceived of as the feature of computational systems, and has been used to argue for irreducibility of higher-level theories. I will show that there are several ways a computational system may be seen to display MR. These ways correspond to (at least) five ways one can conceive of the function of the physical computational system. However, they do not match common intuitions about MR. I show that MR is deeply interest-related, and for this reason, difficult (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Interdisciplinarity in the Making: Models and Methods in Frontier Science.Nancy J. Nersessian - 2022 - Cambridge, MA: MIT.
    A cognitive ethnography of how bioengineering scientists create innovative modeling methods. In this first full-scale, long-term cognitive ethnography by a philosopher of science, Nancy J. Nersessian offers an account of how scientists at the interdisciplinary frontiers of bioengineering create novel problem-solving methods. Bioengineering scientists model complex dynamical biological systems using concepts, methods, materials, and other resources drawn primarily from engineering. They aim to understand these systems sufficiently to control or intervene in them. What Nersessian examines here is how cutting-edge bioengineering (...)
  • Expanding the notion of mechanism to further understanding of biopsychosocial disorders? Depression and medically-unexplained pain as cases in point.Jan Pieter Konsman - 2024 - Studies in History and Philosophy of Science Part A 103 (C):123-136.
    Evidence-Based Medicine has little consideration for mechanisms and philosophers of science and medicine have recently made pleas to increase the place of mechanisms in the medical evidence hierarchy. However, in this debate the notions of mechanisms seem to be limited to 'mechanistic processes' and 'complex-systems mechanisms,' understood as 'componential causal systems'. I believe that this will not do full justice to how mechanisms are used in biological, psychological and social sciences and, consequently, in a more biopsychosocial approach to medicine. Here, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Cajal’s Law of Dynamic Polarization: Mechanism and Design.Sergio Daniel Barberis - 2018 - Philosophies 3 (2):11.
    Santiago Ramón y Cajal, the primary architect of the neuron doctrine and the law of dynamic polarization, is considered to be the founder of modern neuroscience. At the same time, many philosophers, historians, and neuroscientists agree that modern neuroscience embodies a mechanistic perspective on the explanation of the nervous system. In this paper, I review the extant mechanistic interpretation of Cajal’s contribution to modern neuroscience. Then, I argue that the extant mechanistic interpretation fails to capture the explanatory import of Cajal’s (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  • Typology and Natural Kinds in Evo-Devo.Ingo Brigandt - 2021 - In Nuño De La Rosa Laura & Müller Gerd (eds.), Evolutionary Developmental Biology: A Reference Guide. Springer. pp. 483-493.
    The traditional practice of establishing morphological types and investigating morphological organization has found new support from evolutionary developmental biology (evo-devo), especially with respect to the notion of body plans. Despite recurring claims that typology is at odds with evolutionary thinking, evo-devo offers mechanistic explanations of the evolutionary origin, transformation, and evolvability of morphological organization. In parallel, philosophers have developed non-essentialist conceptions of natural kinds that permit kinds to exhibit variation and undergo change. This not only facilitates a construal of species (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Reduction.A. Hütterman & A. C. Love - 2016 - In Paul Humphreys (ed.), The Oxford Handbook of Philosophy of Science. Oxford University Press USA. pp. 460-484.
    Reduction and reductionism have been central philosophical topics in analytic philosophy of science for more than six decades. Together they encompass a diversity of issues from metaphysics and epistemology. This article provides an introduction to the topic that illuminates how contemporary epistemological discussions took their shape historically and limns the contours of concrete cases of reduction in specific natural sciences. The unity of science and the impulse to accomplish compositional reduction in accord with a layer-cake vision of the sciences, the (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  • Mechanisms in Cognitive Science.Carlos Zednik - 2017 - In Stuart Glennan & Phyllis McKay Illari (eds.), The Routledge Handbook of Mechanisms and Mechanical Philosophy. Routledge. pp. 389-400.
    This chapter subsumes David Marr’s levels of analysis account of explanation in cognitive science under the framework of mechanistic explanation: Answering the questions that define each one of Marr’s three levels is tantamount to describing the component parts and operations of mechanisms, as well as their organization, behavior, and environmental context. By explicating these questions and showing how they are answered in several different cognitive science research programs, this chapter resolves some of the ambiguities that remain in Marr’s account, and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Systems Biology and Mechanistic Explanation.Ingo Brigandt, Sara Green & Maureen O'Malley - 2017 - In Stuart Glennan & Phyllis McKay Illari (eds.), The Routledge Handbook of Mechanisms and Mechanical Philosophy. Routledge. pp. 362-374.
    We address the question of whether and to what extent explanatory and modelling strategies in systems biology are mechanistic. After showing how dynamic mathematical models are actually required for mechanistic explanations of complex systems, we caution readers against expecting all systems biology to be about mechanistic explanations. Instead, the aim may be to generate topological explanations that are not standardly mechanistic, or to arrive at design principles that explain system organization and behaviour in general, but not specific mechanisms. These abstraction (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • New Mechanistic Explanation and the Need for Explanatory Constraints.L. R. Franklin-Hall - 2016 - In Ken Aizawa & Carl Gillett (eds.), Scientific Composition and Metaphysical Ground. London: Palgrave-Macmillan. pp. 41-74.
    This paper critiques the new mechanistic explanatory program on grounds that, even when applied to the kinds of examples that it was originally designed to treat, it does not distinguish correct explanations from those that blunder. First, I offer a systematization of the explanatory account, one according to which explanations are mechanistic models that satisfy three desiderata: they must 1) represent causal relations, 2) describe the proper parts, and 3) depict the system at the right ‘level.’ Second, I argue that (...)
    Direct download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Joint representation: Modeling a phenomenon with multiple biological systems.Yoshinari Yoshida - 2023 - Studies in History and Philosophy of Science Part A 99:67-76.
    Biologists often study particular biological systems as models of a phenomenon of interest even if they already know that the phenomenon is produced by diverse mechanisms and hence none of those systems alone can sufficiently represent it. To understand this modeling practice, the present paper provides an account of how multiple model systems can be used to study a phenomenon that is produced by diverse mechanisms. Even if generalizability of results from a single model system is significantly limited, generalizations concerning (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Integrating Multicellular Systems: Physiological Control and Degrees of Biological Individuality.Leonardo Bich - 2023 - Acta Biotheoretica 72 (1):1-22.
    This paper focuses on physiological integration in multicellular systems, a notion often associated with biological individuality, but which has not received enough attention and needs a thorough theoretical treatment. Broadly speaking, physiological integration consists in how different components come together into a cohesive unit in which they are dependent on one another for their existence and activity. This paper argues that physiological integration can be understood by considering how the components of a biological multicellular system are controlled and coordinated in (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • What levels of explanation in the behavioural sciences?Giuseppe Boccignone & Roberto Cordeschi (eds.) - 2015 - Frontiers Media SA.
    Complex systems are to be seen as typically having multiple levels of organization. For instance, in the behavioural and cognitive sciences, there has been a long lasting trend, promoted by the seminal work of David Marr, putting focus on three distinct levels of analysis: the computational level, accounting for the What and Why issues, the algorithmic and the implementational levels specifying the How problem. However, the tremendous developments in neuroscience knowledge about processes at different scales of organization together with the (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  • Models and mechanisms in network neuroscience.Carlos Zednik - 2018 - Philosophical Psychology 32 (1):23-51.
    This paper considers the way mathematical and computational models are used in network neuroscience to deliver mechanistic explanations. Two case studies are considered: Recent work on klinotaxis by Caenorhabditis elegans, and a longstanding research effort on the network basis of schizophrenia in humans. These case studies illustrate the various ways in which network, simulation and dynamical models contribute to the aim of representing and understanding network mechanisms in the brain, and thus, of delivering mechanistic explanations. After outlining this mechanistic construal (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Revisiting abstraction and idealization: how not to criticize mechanistic explanation in molecular biology.Martin Zach - 2022 - European Journal for Philosophy of Science 12 (1):1-20.
    Abstraction and idealization are the two notions that are most often discussed in the context of assumptions employed in the process of model building. These notions are also routinely used in philosophical debates such as that on the mechanistic account of explanation. Indeed, an objection to the mechanistic account has recently been formulated precisely on these grounds: mechanists cannot account for the common practice of idealizing difference-making factors in models in molecular biology. In this paper I revisit the debate and (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Multiple-Models Juxtaposition and Trade-Offs among Modeling Desiderata.Yoshinari Yoshida - 2021 - Philosophy of Science 88 (1):103-123.
    This article offers a characterization of what I call multiple-models juxtaposition, a strategy for managing trade-offs among modeling desiderata. MMJ displays models of distinct phenomena to...
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • II—James Woodward: Mechanistic Explanation: Its Scope and Limits.James Woodward - 2013 - Aristotelian Society Supplementary Volume 87 (1):39-65.
    This paper explores the question of whether all or most explanations in biology are, or ideally should be, ‘mechanistic’. I begin by providing an account of mechanistic explanation, making use of the interventionist ideas about causation I have developed elsewhere. This account emphasizes the way in which mechanistic explanations, at least in the biological sciences, integrate difference‐making and spatio‐temporal information, and exhibit what I call fine‐tunedness of organization. I also emphasize the role played by modularity conditions in mechanistic explanation. I (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   68 citations  
  • The Evolutionary Relevance of Abstraction and Representation.Andrew M. Winters - 2014 - Biosemiotics 7 (1):125-139.
    This paper investigates the roles that abstraction and representation have in activities associated with language. Activities such as associative learning and counting require both the abilities to abstract from and accurately represent the environment. These activities are successfully carried out among vocal learners aside from humans, thereby suggesting that nonhuman animals share something like our capacity for abstraction and representation. The identification of these capabilities in other species provides additional insights into the development of language.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Role of Unification in Micro-Explanations of Physical Laws.Erik Weber & Merel Lefevere - 2014 - Theoria 29 (1):41-56.
    In the literature on scientific explanation, there is a classical distinction between explanations of facts and explanations of laws. This paper is about explanations of laws, more specifically mechanistic explanations of laws. We investigate whether providing unificatory information in mechanistic explanations of laws has a surplus value. Unificatory information is information about how the mechanism that explains the law which is our target relates to other mechanisms. We argue that providing unificatory information can lead to explanations with more explanatory power (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Evidence for personalised medicine: mechanisms, correlation, and new kinds of black box.Mary Jean Walker, Justin Bourke & Katrina Hutchison - 2019 - Theoretical Medicine and Bioethics 40 (2):103-121.
    Personalised medicine has been discussed as a medical paradigm shift that will improve health while reducing inefficiency and waste. At the same time, it raises new practical, regulatory, and ethical challenges. In this paper, we examine PM strategies epistemologically in order to develop capacities to address these challenges, focusing on a recently proposed strategy for developing patient-specific models from induced pluripotent stem cells so as to make individualised treatment predictions. We compare this strategy to two main PM strategies—stratified medicine and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Validating Function-Based Design Methods: an Explanationist Perspective.Dingmar van Eck - 2015 - Philosophy and Technology 28 (4):511-531.
    Analysis of the adequacy of engineering design methods, as well as analysis of the utility of concepts of function often invoked in these methods, is a neglected topic in both philosophy of technology and in engineering proper. In this paper, I present an approach—dubbed an explanationist perspective—for assessing the adequacy of function-based design methods. Engineering design is often intertwined with explanation, for instance, in reverse engineering and subsequent redesign, knowledge base-assisted designing, and diagnostic reasoning. I argue that the presented approach (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reconciling Ontic and Epistemic Constraints on Mechanistic Explanation, Epistemically.Dingmar van Eck - 2015 - Axiomathes 25 (1):5-22.
    In this paper I address the current debate on ontic versus epistemic conceptualizations of mechanistic explanation in the mechanisms literature. Illari recently argued that good explanations are subject to both ontic and epistemic constraints: they must describe mechanisms in the world in such fashion that they provide understanding of their workings. Elaborating upon Illari’s ‘integration’ account, I argue that causal role function discovery of mechanisms and their components is an epistemic prerequisite for achieving these two aims. This analysis extends Illari’s (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • Mechanist idealisation in systems biology.Dingmar van Eck & Cory Wright - 2020 - Synthese 199 (1-2):1555-1575.
    This paper adds to the philosophical literature on mechanistic explanation by elaborating two related explanatory functions of idealisation in mechanistic models. The first function involves explaining the presence of structural/organizational features of mechanisms by reference to their role as difference-makers for performance requirements. The second involves tracking counterfactual dependency relations between features of mechanisms and features of mechanistic explanandum phenomena. To make these functions salient, we relate our discussion to an exemplar from systems biological research on the mechanism for countering (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mechanistic explanation in engineering science.Dingmar van Eck - 2015 - European Journal for Philosophy of Science 5 (3):349-375.
    In this paper I apply the mechanistic account of explanation to engineering science. I discuss two ways in which this extension offers further development of the mechanistic view. First, functional individuation of mechanisms in engineering science proceeds by means of two distinct sub types of role function, behavior function and effect function, rather than role function simpliciter. Second, it offers refined assessment of the explanatory power of mechanistic explanations. It is argued that in the context of malfunction explanations of technical (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Mechanism Discovery and Design Explanation: Where Role Function Meets Biological Advantage Function.Dingmar van Eck & Julie Mennes - 2018 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 49 (3):413-434.
    In the recent literature on explanation in biology, increasing attention is being paid to the connection between design explanation and mechanistic explanation, viz. the role of design principles and heuristics for mechanism discovery and mechanistic explanation. In this paper we extend the connection between design explanation and mechanism discovery by prizing apart two different types of design explanation and by elaborating novel heuristics that one specific type offers for mechanism discovery across species. We illustrate our claims in terms of two (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Difference making, explanatory relevance, and mechanistic models.Dingmar van Eck & Raoul Gervais - 2016 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 31 (1):125-134.
    In this paper we consider mechanistic explanations for biologic malfunctions. Drawing on Lipton’s work on difference making, we offer three reasons why one should distinguish i) mechanistic features that only make a difference to the malfunction one aims to explain, from ii) features that make a difference to both the malfunction and normal functioning. Recognition of the distinction is important for a) repair purposes, b) mechanism discovery, and c) understanding. This analysis extends current mechanistic thinking, which fails to appreciate the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Conceptual Constructive Models and Abstraction-as-Aggregation.Sim-Hui Tee - 2021 - Philosophia 49 (2):819-837.
    Conceptual constructive models are a type of scientific model that can be used to construct or reshape the target phenomenon conceptually. Though it has received scant attention from the philosophers, it raises an intriguing issue of how a conceptual constructive model can construct the target phenomenon in a conceptual way. Proponents of the conception of conceptual constructive models are not being explicit about the application of the constructive force of a model in the target construction. It is far from clear (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Abstraction as an Autonomous Process in Scientific Modeling.Sim-Hui Tee - 2020 - Philosophia 48 (2):789-801.
    ion is one of the important processes in scientific modeling. It has always been implied that abstraction is an agent-centric activity that involves the cognitive processes of scientists in model building. I contend that there is an autonomous aspect of abstraction in many modeling activities. I argue that the autonomous process of abstraction is continuous with the agent-centric abstraction but capable of evolving independently from the modeler’s abstraction activity.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mechanistic Explanation of Biological Processes.Derek John Skillings - 2015 - Philosophy of Science 82 (5):1139-1151.
    Biological processes are often explained by identifying the underlying mechanisms that generate a phenomenon of interest. I characterize a basic account of mechanistic explanation and then present three challenges to this account, illustrated with examples from molecular biology. The basic mechanistic account is insufficient for explaining nonsequential and nonlinear dynamic processes, is insufficient for explaining the inherently stochastic nature of many biological mechanisms, and fails to give a proper framework for analyzing organization. I suggest that biological processes are best approached (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • Review of Physical Computation: A Mechanistic Account by Gualtiero Piccinini - Gualtiero Piccinini, Physical Computation: A Mechanistic Account. Oxford: Oxford University Press (2015), 313 pp., $65.00 (cloth). [REVIEW]Oron Shagrir - 2017 - Philosophy of Science 84 (3):604-612.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • Dealing with Molecular Complexity. Atomistic Computer Simulations and Scientific Explanation.Julie Schweer & Marcus Elstner - 2023 - Perspectives on Science 31 (5):594-626.
    Explanation is commonly considered one of the central goals of science. Although computer simulations have become an important tool in many scientific areas, various philosophical concerns indicate that their explanatory power requires further scrutiny. We examine a case study in which atomistic simulations have been used to examine the factors responsible for the transport selectivity of certain channel proteins located at cell membranes. By elucidating how precisely atomistic simulations helped scientists draw inferences about the molecular system under investigation, we respond (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Discovery of causal mechanisms: Oxidative phosphorylation and the Calvin–Benson cycle.Raphael Scholl & Kärin Nickelsen - 2015 - History and Philosophy of the Life Sciences 37 (2):180-209.
    We investigate the context of discovery of two significant achievements of twentieth century biochemistry: the chemiosmotic mechanism of oxidative phosphorylation and the dark reaction of photosynthesis. The pursuit of these problems involved discovery strategies such as the transfer, recombination and reversal of previous causal and mechanistic knowledge in biochemistry. We study the operation and scope of these strategies by careful historical analysis, reaching a number of systematic conclusions: even basic strategies can illuminate “hard cases” of scientific discovery that go far (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Discovery of causal mechanisms: Oxidative phosphorylation and the Calvin–Benson cycle.Raphael Scholl & Kärin Nickelsen - 2015 - History and Philosophy of the Life Sciences 37 (2):180-209.
    We investigate the context of discovery of two significant achievements of twentieth century biochemistry: the chemiosmotic mechanism of oxidative phosphorylation and the dark reaction of photosynthesis. The pursuit of these problems involved discovery strategies such as the transfer, recombination and reversal of previous causal and mechanistic knowledge in biochemistry. We study the operation and scope of these strategies by careful historical analysis, reaching a number of systematic conclusions: even basic strategies can illuminate “hard cases” of scientific discovery that go far (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Tracers in neuroscience: Causation, constraints, and connectivity.Lauren N. Ross - 2021 - Synthese 199 (1-2):4077-4095.
    This paper examines tracer techniques in neuroscience, which are used to identify neural connections in the brain and nervous system. These connections capture a type of “structural connectivity” that is expected to inform our understanding of the functional nature of these tissues. This is due to the fact that neural connectivity constrains the flow of signal propagation, which is a type of causal process in neurons. This work explores how tracers are used to identify causal information, what standards they are (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cascade versus Mechanism: The Diversity of Causal Structure in Science.Lauren N. Ross - forthcoming - British Journal for the Philosophy of Science.
    According to mainstream philosophical views causal explanation in biology and neuroscience is mechanistic. As the term ‘mechanism’ gets regular use in these fields it is unsurprising that philosophers consider it important to scientific explanation. What is surprising is that they consider it the only causal term of importance. This paper provides an analysis of a new causal concept—it examines the cascade concept in science and the causal structure it refers to. I argue that this concept is importantly different from the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Causal Concepts in Biology: How Pathways Differ from Mechanisms and Why It Matters.Lauren N. Ross - 2021 - British Journal for the Philosophy of Science 72 (1):131-158.
    In the last two decades few topics in philosophy of science have received as much attention as mechanistic explanation. A significant motivation for these accounts is that scientists frequently use the term “mechanism” in their explanations of biological phenomena. While scientists appeal to a variety of causal concepts in their explanations, many philosophers argue or assume that all of these concepts are well understood with the single notion of mechanism. This reveals a significant problem with mainstream mechanistic accounts– although philosophers (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   25 citations  
  • Multilevel Ensemble Explanations: A Case from Theoretical Biology.Luca Rivelli - 2019 - Perspectives on Science 27 (1):88-116.
    In this paper I will reconstruct and analyze a famous argument by Stuart Kauffman about complex systems and evolution, in order to highlight the use in theoretical biology of a kind of non-mechanistic and non-causal explanation which I propose to call, following Kauffman, ensemble explanation. The aim is to contribute to the ongoing philosophical debate about non-causal explanations in the special sciences, kinds of explanation apparently extraneous to the received causal-mechanistic view. Ensemble explanations resemble quite closely the explanations of the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • ‘Models of’ and ‘Models for’: On the Relation between Mechanistic Models and Experimental Strategies in Molecular Biology.Emanuele Ratti - 2018 - British Journal for the Philosophy of Science (2):773-797.
    Molecular biologists exploit information conveyed by mechanistic models for experimental purposes. In this article, I make sense of this aspect of biological practice by developing Keller’s idea of the distinction between ‘models of’ and ‘models for’. ‘Models of (phenomena)’ should be understood as models representing phenomena and are valuable if they explain phenomena. ‘Models for (manipulating phenomena)’ are new types of material manipulations and are important not because of their explanatory force, but because of the interventionist strategies they afford. This (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Network representation and complex systems.Charles Rathkopf - 2018 - Synthese (1).
    In this article, network science is discussed from a methodological perspective, and two central theses are defended. The first is that network science exploits the very properties that make a system complex. Rather than using idealization techniques to strip those properties away, as is standard practice in other areas of science, network science brings them to the fore, and uses them to furnish new forms of explanation. The second thesis is that network representations are particularly helpful in explaining the properties (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   32 citations  
  • Abstraction in ecology: reductionism and holism as complementary heuristics.Jani Raerinne - 2018 - European Journal for Philosophy of Science 8 (3):395-416.
    In addition to their core explanatory and predictive assumptions, scientific models include simplifying assumptions, which function as idealizations, approximations, and abstractions. There are methods to investigate whether simplifying assumptions bias the results of models, such as robustness analyses. However, the equally important issue – the focus of this paper – has received less attention, namely, what are the methodological and epistemic strengths and limitations associated with different simplifying assumptions. I concentrate on one type of simplifying assumption, the use of mega (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Idealization and abstraction in scientific modeling.Demetris Portides - 2018 - Synthese 198 (Suppl 24):5873-5895.
    I argue that we cannot adequately characterize idealization and abstraction and the distinction between the two on the grounds that they have distinct semantic properties. By doing so, on the one hand, we focus on the conceptual products of the two processes in making the distinction and we overlook the importance of the nature of the thought processes that underlie model-simplifying assumptions. On the other hand, we implicitly rely on a sense of abstraction as subtraction, which is unsuitable for explicating (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • Varieties of difference-makers: Considerations on chirimuuta’s approach to non-causal explanation in neuroscience.Abel Wajnerman Paz - 2019 - Manuscrito 42 (1):91-119.
    Causal approaches to explanation often assume that a model explains by describing features that make a difference regarding the phenomenon. Chirimuuta claims that this idea can be also used to understand non-causal explanation in computational neuroscience. She argues that mathematical principles that figure in efficient coding explanations are non-causal difference-makers. Although these principles cannot be causally altered, efficient coding models can be used to show how would the phenomenon change if the principles were modified in counterpossible situations. The problem is (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • A mechanistic perspective on canonical neural computation.Abel Wajnerman Paz - 2017 - Philosophical Psychology 30 (3):209-230.
    Although it has been argued that mechanistic explanation is compatible with abstraction, there are still doubts about whether mechanism can account for the explanatory power of significant abstract models in computational neuroscience. Chirimuuta has recently claimed that models describing canonical neural computations must be evaluated using a non-mechanistic framework. I defend two claims regarding these models. First, I argue that their prevailing neurocognitive interpretation is mechanistic. Additionally, a criterion recently proposed by Levy and Bechtel to legitimize mechanistic abstract models, and (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • LTP Revisited: Reconsidering the Explanatory Power of Synaptic Efficacy.Jonathan Najenson - 2023 - Review of Philosophy and Psychology:1-26.
    Changes in synaptic strength are described as a unifying hypothesis for memory formation and storage, leading philosophers to consider the ‘synaptic efficacy hypothesis’ as a paradigmatic explanation in neuroscience. Craver’s mosaic view has been influential in understanding synaptic efficacy by presenting long-term potentiation as a multi-level mechanism nested within a multi-level structure. This paper argues that the mosaic view fails to fully capture the explanatory power of the synaptic efficacy hypothesis due to assumptions about multi-level mechanisms. I present an alternative (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Integrating cognitive (neuro)science using mechanisms.Marcin Miłkowski - 2016 - Avant: Trends in Interdisciplinary Studies (2):45-67.
    In this paper, an account of theoretical integration in cognitive (neuro)science from the mechanistic perspective is defended. It is argued that mechanistic patterns of integration can be better understood in terms of constraints on representations of mechanisms, not just on the space of possible mechanisms, as previous accounts of integration had it. This way, integration can be analyzed in more detail with the help of constraintsatisfaction account of coherence between scientific representations. In particular, the account has resources to talk of (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Explanatory completeness and idealization in large brain simulations: a mechanistic perspective.Marcin Miłkowski - 2016 - Synthese 193 (5):1457-1478.
    The claim defended in the paper is that the mechanistic account of explanation can easily embrace idealization in big-scale brain simulations, and that only causally relevant detail should be present in explanatory models. The claim is illustrated with two methodologically different models: Blue Brain, used for particular simulations of the cortical column in hybrid models, and Eliasmith’s SPAUN model that is both biologically realistic and able to explain eight different tasks. By drawing on the mechanistic theory of computational explanation, I (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  • Mechanism Discovery and Design Explanation: Where Role Function Meets Biological Advantage Function.Julie Mennes & Dingmar Eck - 2018 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 49 (3):413-434.
    In the recent literature on explanation in biology, increasing attention is being paid to the connection between design explanation and mechanistic explanation, viz. the role of design principles and heuristics for mechanism discovery and mechanistic explanation. In this paper we extend the connection between design explanation and mechanism discovery by prizing apart two different types of design explanation and by elaborating novel heuristics that one specific type offers for mechanism discovery across species. We illustrate our claims in terms of two (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Heuristic of Form: Mitochondrial Morphology and the Explanation of Oxidative Phosphorylation.Karl S. Matlin - 2016 - Journal of the History of Biology 49 (1):37-94.
    In the 1950s and 1960s, the search for the mechanism of oxidative phosphorylation by biochemists paralleled the description of mitochondrial form by George Palade and Fritiof Sjöstrand using electron microscopy. This paper explores the extent to which biochemists studying oxidative phosphorylation took mitochondrial form into account in the formulation of hypotheses, design of experiments, and interpretation of results. By examining experimental approaches employed by the biochemists studying oxidative phosphorylation, and their interactions with Palade, I suggest that use of mitochondrial form (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mechanistic Explanation in Systems Biology: Cellular Networks.Dana Matthiessen - 2017 - British Journal for the Philosophy of Science 68 (1):1-25.
    It is argued that once biological systems reach a certain level of complexity, mechanistic explanations provide an inadequate account of many relevant phenomena. In this article, I evaluate such claims with respect to a representative programme in systems biological research: the study of regulatory networks within single-celled organisms. I argue that these networks are amenable to mechanistic philosophy without need to appeal to some alternate form of explanation. In particular, I claim that we can understand the mathematical modelling techniques of (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  • Causal Concepts Guiding Model Specification in Systems Biology.Dana Matthiessen - 2017 - Disputatio 9 (47):499-527.
    In this paper I analyze the process by which modelers in systems biology arrive at an adequate representation of the biological structures thought to underlie data gathered from high-throughput experiments. Contrary to views that causal claims and explanations are rare in systems biology, I argue that in many studies of gene regulatory networks modelers aim at a representation of causal structure. In addressing modeling challenges, they draw on assumptions informed by theory and pragmatic considerations in a manner that is guided (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Modeling systems-level dynamics: Understanding without mechanistic explanation in integrative systems biology.Miles MacLeod & Nancy J. Nersessian - 2015 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 49:1-11.