Switch to: References

Add citations

You must login to add citations.
  1. The Physics of Forgetting: Thermodynamics of Information at IBM 1959–1982.Aaron Sidney Wright - 2016 - Perspectives on Science 24 (1):112-141.
    . The origin and history of Landauer’s principle is traced through the development of the thermodynamics of computation at IBM from 1959 to 1982. This development was characterized by multiple conceptual shifts: memory came to be seen not as information storage, but as delayed information transmission; information itself was seen not as a disembodied logical entity, but as participating in the physical world; and logical irreversibility was connected with physical, thermodynamic, irreversibility. These conceptual shifts were characterized by an ambivalence opposing (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Arrow of Time in Physics.David Wallace - 2013 - In Heather Dyke & Adrian Bardon (eds.), A Companion to the Philosophy of Time. Chichester, UK: Wiley. pp. 262–281.
    Every process studied in any science other than physics defines an arrow of time – to say nothing for the directedness of the processes of causation, inference, memory, control, and counterfactual dependence that occur in everyday life. The discussion in this chapter is confined to the arrow of time as it occurs in physics. The chapter briefly discusses those features of microscopic physics, which seem to conflict with time asymmetry. It explains just how this conflict plays out in the important (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  • On the Equivalence of von Neumann and Thermodynamic Entropy.Carina E. A. Prunkl - 2020 - Philosophy of Science 87 (2):262-280.
    In 1932, John von Neumann argued for the equivalence of the thermodynamic entropy and −Trρlnρ, since known as the von Neumann entropy. Meir Hemmo and Orly R. Shenker recently challenged this argument by pointing out an alleged discrepancy between the two entropies in the single-particle case, concluding that they must be distinct. In this article, their argument is shown to be problematic as it allows for a violation of the second law of thermodynamics and is based on an incorrect calculation (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Waiting for Landauer.John D. Norton - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (3):184-198.
    Landauer's Principle asserts that there is an unavoidable cost in thermodynamic entropy creation when data is erased. It is usually derived from incorrect assumptions, most notably, that erasure must compress the phase space of a memory device or that thermodynamic entropy arises from the probabilistic uncertainty of random data. Recent work seeks to prove Landauer’s Principle without using these assumptions. I show that the processes assumed in the proof, and in the thermodynamics of computation more generally, can be combined to (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  • Author's Reply to Landauer Defended.John D. Norton - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (3):272-272.
  • Does a Computer Have an Arrow of Time?Owen J. E. Maroney - 2010 - Foundations of Physics 40 (2):205-238.
    Schulman (Entropy 7(4):221–233, 2005) has argued that Boltzmann’s intuition, that the psychological arrow of time is necessarily aligned with the thermodynamic arrow, is correct. Schulman gives an explicit physical mechanism for this connection, based on the brain being representable as a computer, together with certain thermodynamic properties of computational processes. Hawking (Physical Origins of Time Asymmetry, Cambridge University Press, Cambridge, 1994) presents similar, if briefer, arguments. The purpose of this paper is to critically examine the support for the link between (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • The use of the information-theoretic entropy in thermodynamics.James Ladyman, Stuart Presnell & Anthony J. Short - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (2):315-324.
    When considering controversial thermodynamic scenarios such as Maxwell's demon, it is often necessary to consider probabilistic mixtures of states. This raises the question of how, if at all, to assign entropy to them. The information-theoretic entropy is often used in such cases; however, no general proof of the soundness of doing so has been given, and indeed some arguments against doing so have been presented. We offer a general proof of the applicability of the information-theoretic entropy to probabilistic mixtures of (...)
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Landauer defended: Reply to Norton.James A. C. Ladyman & Katie Robertson - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (3):263-271.
    Ladyman, Presnell, and Short proposed a model of the implementation of logical operations by physical processes in order to clarify the exact statement of Landauer's Principle, and then offered a new proof of the latter based on the construction of a thermodynamic cycle, arguing that if Landauer's Principle were false it would be possible to harness a machine that violated it to produce a violation of the second law of thermodynamics. In a recent paper in this journal, John Norton directly (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • The physics of implementing logic: Landauer's principle and the multiple-computations theorem.Meir Hemmo & Orly Shenker - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 68:90-105.
    This paper makes a novel linkage between the multiple-computations theorem in philosophy of mind and Landauer’s principle in physics. The multiple-computations theorem implies that certain physical systems implement simultaneously more than one computation. Landauer’s principle implies that the physical implementation of “logically irreversible” functions is accompanied by minimal entropy increase. We show that the multiple-computations theorem is incompatible with, or at least challenges, the universal validity of Landauer’s principle. To this end we provide accounts of both ideas in terms of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • A challenge to the second law of thermodynamics from cognitive science and vice versa.Meir Hemmo & Orly Shenker - 2021 - Synthese 199 (1-2):4897-4927.
    We show that the so-called Multiple-Computations Theorem in cognitive science and philosophy of mind challenges Landauer’s Principle in physics. Since the orthodox wisdom in statistical physics is that Landauer’s Principle is implied by, or is the mechanical equivalent of, the Second Law of thermodynamics, our argument shows that the Multiple-Computations Theorem challenges the universal validity of the Second Law of thermodynamics itself. We construct two examples of computations carried out by one and the same dynamical process with respect to which (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the Origin of Ambiguity in Efficient Communication.Jordi Fortuny & Bernat Corominas-Murtra - 2013 - Journal of Logic, Language and Information 22 (3):249-267.
    This article studies the emergence of ambiguity in communication through the concept of logical irreversibility and within the framework of Shannon’s information theory. This leads us to a precise and general expression of the intuition behind Zipf’s vocabulary balance in terms of a symmetry equation between the complexities of the coding and the decoding processes that imposes an unavoidable amount of logical uncertainty in natural communication. Accordingly, the emergence of irreversible computations is required if the complexities of the coding and (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Unpredictable homeodynamic and ambient constraints on irrational decision making of aneural and neural foragers.Kevin B. Clark - 2019 - Behavioral and Brain Sciences 42.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • There’s Plenty of Boole at the Bottom: A Reversible CA Against Information Entropy.Francesco Berto, Jacopo Tagliabue & Gabriele Rossi - 2016 - Minds and Machines 26 (4):341-357.
    “There’s Plenty of Room at the Bottom”, said the title of Richard Feynman’s 1959 seminal conference at the California Institute of Technology. Fifty years on, nanotechnologies have led computer scientists to pay close attention to the links between physical reality and information processing. Not all the physical requirements of optimal computation are captured by traditional models—one still largely missing is reversibility. The dynamic laws of physics are reversible at microphysical level, distinct initial states of a system leading to distinct final (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Information Processing Artifacts.Neal G. Anderson - 2019 - Minds and Machines 29 (2):193-225.
    What is a computer? What distinguishes computers from other artificial or natural systems with alleged computational capacities? What does use of a physical system for computation entail, and what distinguishes such use from otherwise identical transformation of that same system when it is not so used? This paper addresses such questions through a theory of information processing artifacts, the class of technical artifacts with physical capacities that enable agents to use them as means to their computational ends. Function ascription, use (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Time in Thermodynamics.Jill North - 2011 - In Criag Callender (ed.), The Oxford Handbook of Philosophy of Time. Oxford University Press. pp. 312--350.
    Or better: time asymmetry in thermodynamics. Better still: time asymmetry in thermodynamic phenomena. “Time in thermodynamics” misleadingly suggests that thermodynamics will tell us about the fundamental nature of time. But we don’t think that thermodynamics is a fundamental theory. It is a theory of macroscopic behavior, often called a “phenomenological science.” And to the extent that physics can tell us about the fundamental features of the world, including such things as the nature of time, we generally think that only fundamental (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   34 citations  
  • A field guide to recent work on the foundations of statistical mechanics.Roman Frigg - 2008 - In Dean Rickles (ed.), The Ashgate Companion to Contemporary Philosophy of Physics. London, U.K.: Ashgate. pp. 99-196.
    This is an extensive review of recent work on the foundations of statistical mechanics.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   92 citations  
  • Historical and Conceptual Foundations of Information Physics.Anta Javier - 2021 - Dissertation, Universitat de Barcelona
    The main objective of this dissertation is to philosophically assess how the use of informational concepts in the field of classical thermostatistical physics has historically evolved from the late 1940s to the present day. I will first analyze in depth the main notions that form the conceptual basis on which 'informational physics' historically unfolded, encompassing (i) different entropy, probability and information notions, (ii) their multiple interpretative variations, and (iii) the formal, numerical and semantic-interpretative relationships among them. In the following, I (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Physics and Computation:The Statues of Landauer's Principle.James A. C. Ladyman - 2007 - In S. B. Cooper, B. Löwe & A. Sorbi (eds.), Computation and Logic in the Real World. CiE 2007. Lecture Notes in Computer Science, vol 4497.
    Realism about computation is the view that whether or not a particular physical system is performing a particular computation is at least sometimes a mindindependent feature of reality. The caveat ’at least sometimes’ is necessary here because a realist about computation need not believe that all instances of computation should be realistically construed. The computational theory of mind presupposes realism about computation. If whether or not the human nervous system implements particular computations is not a natural fact about the world (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • How is there a Physics of Information? On characterising physical evolution as information processing.O. J. E. Maroney & C. G. Timpson - unknown
    We have a conundrum. The physical basis of information is clearly a highly active research area. Yet the power of information theory comes precisely from separating it from the detailed problems of building physical systems to perform information processing tasks. Developments in quantum information over the last two decades seem to have undermined this separation, leading to suggestions that information is itself a physical entity and must be part of our physical theories, with resource-cost implications. We will consider a variety (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Information and physics.Radosław Kycia & Agnieszka Niemczynowicz - 2020 - Philosophical Problems in Science 69:237-252.
    This is an overview article that contains the discussion of the connection between information and physics at the elementary level. We present a derivation of Lindauer’s bound for heat emission during irreversible logical operation. In this computation the Szilard’s version of Maxwell’s demon paradox is used as a model to design thermodynamic implementation of a single bit of computer memory. Lindauer’s principle also motivates the discussion on the practical and emergent nature of the information. Apart from physics, the principle has (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation