Switch to: References

Add citations

You must login to add citations.
  1. The strategy of model building in climate science.Lachlan Douglas Walmsley - 2020 - Synthese 199 (1-2):745-765.
    In the 1960s, theoretical biologist Richard Levins criticised modellers in his own discipline of population biology for pursuing the “brute force” strategy of building hyper-realistic models. Instead of exclusively chasing complexity, Levins advocated for the use of multiple different kinds of complementary models, including much simpler ones. In this paper, I argue that the epistemic challenges Levins attributed to the brute force strategy still apply to state-of-the-art climate models today: they have big appetites for unattainable data, they are limited by (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Volterra Principle Generalized.Tim Räz - 2017 - Philosophy of Science 84 (4):737-760.
    Michael Weisberg and Kenneth Reisman argue that the Volterra Principle can be derived from multiple predator-prey models and that, therefore, the Volterra Principle is a prime example for robustness analysis. In the current article, I give new results regarding the Volterra Principle, extending Weisberg’s and Reisman’s work, and I discuss the consequences of these results for robustness analysis. I argue that we do not end up with multiple, independent models but rather with one general model. I identify the kind of (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Synthetic biology and genetic causation.Gry Oftedal & Veli-Pekka Parkkinen - 2013 - Studies in History and Philosophy of Biological and Biomedical Sciences 44 (2):208-216.
    Synthetic biology research is often described in terms of programming cells through the introduction of synthetic genes. Genetic material is seemingly attributed with a high level of causal responsibility. We discuss genetic causation in synthetic biology and distinguish three gene concepts differing in their assumptions of genetic control. We argue that synthetic biology generally employs a difference-making approach to establishing genetic causes, and that this approach does not commit to a specific notion of genetic program or genetic control. Still, we (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Derivational Robustness and Indirect Confirmation.Aki Lehtinen - 2018 - Erkenntnis 83 (3):539-576.
    Derivational robustness may increase the degree to which various pieces of evidence indirectly confirm a robust result. There are two ways in which this increase may come about. First, if one can show that a result is robust, and that the various individual models used to derive it also have other confirmed results, these other results may indirectly confirm the robust result. Confirmation derives from the fact that data not known to bear on a result are shown to be relevant (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  • Science in a New Mode: Good Old (Theoretical) Science Versus Brave New (Commodified) Knowledge Production?Tarja Knuuttila - 2013 - Science & Education 22 (10):2443-2461.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Modelling and representing: An artefactual approach to model-based representation.Tarja Knuuttila - 2011 - Studies in History and Philosophy of Science Part A 42 (2):262-271.
    The recent discussion on scientific representation has focused on models and their relationship to the real world. It has been assumed that models give us knowledge because they represent their supposed real target systems. However, here agreement among philosophers of science has tended to end as they have presented widely different views on how representation should be understood. I will argue that the traditional representational approach is too limiting as regards the epistemic value of modelling given the focus on the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   129 citations  
  • Biological Control Variously Materialized: Modeling, Experimentation and Exploration in Multiple Media.Tarja Knuuttila & Andrea Loettgers - 2021 - Perspectives on Science 29 (4):468-492.
    This paper examines two parallel discussions of scientific modeling which have invoked experimentation in addressing the role of models in scientific inquiry. One side discusses the experimental character of models, whereas the other focuses on their exploratory uses. Although both relate modeling to experimentation, they do so differently. The former has considered the similarities and differences between models and experiments, addressing, in particular, the epistemic value of materiality. By contrast, the focus on exploratory modeling has highlighted the various kinds of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Basic science through engineering? Synthetic modeling and the idea of biology-inspired engineering.Tarja Knuuttila & Andrea Loettgers - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (2):158-169.
    Synthetic biology is often understood in terms of the pursuit for well-characterized biological parts to create synthetic wholes. Accordingly, it has typically been conceived of as an engineering dominated and application oriented field. We argue that the relationship of synthetic biology to engineering is far more nuanced than that and involves a sophisticated epistemic dimension, as shown by the recent practice of synthetic modeling. Synthetic models are engineered genetic networks that are implanted in a natural cell environment. Their construction is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  • Systematizing the theoretical virtues.Michael N. Keas - 2017 - Synthese 1 (6):1-33.
    There are at least twelve major virtues of good theories: evidential accuracy, causal adequacy, explanatory depth, internal consistency, internal coherence, universal coherence, beauty, simplicity, unification, durability, fruitfulness, and applicability. These virtues are best classified into four classes: evidential, coherential, aesthetic, and diachronic. Each virtue class contains at least three virtues that sequentially follow a repeating pattern of progressive disclosure and expansion. Systematizing the theoretical virtues in this manner clarifies each virtue and suggests how they might have a coordinated and cumulative (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   50 citations  
  • When one model is not enough: Combining epistemic tools in systems biology.Sara Green - 2013 - Studies in History and Philosophy of Biological and Biomedical Sciences 44 (2):170-180.
    In recent years, the philosophical focus of the modeling literature has shifted from descriptions of general properties of models to an interest in different model functions. It has been argued that the diversity of models and their correspondingly different epistemic goals are important for developing intelligible scientific theories. However, more knowledge is needed on how a combination of different epistemic means can generate and stabilize new entities in science. This paper will draw on Rheinberger’s practice-oriented account of knowledge production. The (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   21 citations