Switch to: References

Add citations

You must login to add citations.
  1. Modal Definability of First-Order Formulas with Free Variables and Query Answering.Stanislav Kikot & Evgeny Zolin - 2013 - Journal of Applied Logic 11 (2):190-216.
  • A Dichotomy for Some Elementarily Generated Modal Logics.Stanislav Kikot - 2015 - Studia Logica 103 (5):1063-1093.
    In this paper we consider the normal modal logics of elementary classes defined by first-order formulas of the form \. We prove that many properties of these logics, such as finite axiomatisability, elementarity, axiomatisability by a set of canonical formulas or by a single generalised Sahlqvist formula, together with modal definability of the initial formula, either simultaneously hold or simultaneously do not hold.
    Direct download (4 more)  
    Export citation  
    Bookmark   1 citation  
  • Non-Finitely Axiomatisable Modal Product Logics with Infinite Canonical Axiomatisations.Christopher Hampson, Stanislav Kikot, Agi Kurucz & Sérgio Marcelino - 2020 - Annals of Pure and Applied Logic 171 (5):102786.
    Our concern is the axiomatisation problem for modal and algebraic logics that correspond to various fragments of two-variable first-order logic with counting quantifiers. In particular, we consider modal products with Diff, the propositional unimodal logic of the difference operator. We show that the two-dimensional product logic $Diff \times Diff$ is non-finitely axiomatisable, but can be axiomatised by infinitely many Sahlqvist axioms. We also show that its ‘square’ version (the modal counterpart of the substitution and equality free fragment of two-variable first-order (...)
    Direct download (2 more)  
    Export citation  
    Bookmark   2 citations  
  • A Computational Learning Semantics for Inductive Empirical Knowledge.Kevin T. Kelly - 2014 - In Alexandru Baltag & Sonja Smets (eds.), Johan van Benthem on Logic and Information Dynamics. Springer International Publishing. pp. 289-337.
    This chapter presents a new semantics for inductive empirical knowledge. The epistemic agent is represented concretely as a learner who processes new inputs through time and who forms new beliefs from those inputs by means of a concrete, computable learning program. The agent’s belief state is represented hyper-intensionally as a set of time-indexed sentences. Knowledge is interpreted as avoidance of error in the limit and as having converged to true belief from the present time onward. Familiar topics are re-examined within (...)
    No categories
    Direct download  
    Export citation  
    Bookmark   2 citations