Switch to: References

Add citations

You must login to add citations.
  1. Non-Finitely Axiomatisable Modal Product Logics with Infinite Canonical Axiomatisations.Christopher Hampson, Stanislav Kikot, Agi Kurucz & Sérgio Marcelino - 2020 - Annals of Pure and Applied Logic 171 (5):102786.
    Our concern is the axiomatisation problem for modal and algebraic logics that correspond to various fragments of two-variable first-order logic with counting quantifiers. In particular, we consider modal products with Diff, the propositional unimodal logic of the difference operator. We show that the two-dimensional product logic $Diff \times Diff$ is non-finitely axiomatisable, but can be axiomatised by infinitely many Sahlqvist axioms. We also show that its ‘square’ version (the modal counterpart of the substitution and equality free fragment of two-variable first-order (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations