Switch to: References

Add citations

You must login to add citations.
  1. Undecidability of the Real-Algebraic Structure of Models of Intuitionistic Elementary Analysis.Miklós Erdélyi-Szabó - 2000 - Journal of Symbolic Logic 65 (3):1014-1030.
    We show that true first-order arithmetic is interpretable over the real-algebraic structure of models of intuitionistic analysis built upon a certain class of complete Heyting algebras. From this the undecidability of the structures follows. We also show that Scott's model is equivalent to true second-order arithmetic. In the appendix we argue that undecidability on the language of ordered rings follows from intuitionistically plausible properties of the real numbers.
    Direct download (7 more)  
    Export citation  
    Bookmark   1 citation