Switch to: References

Citations of:

Some random observations

Synthese 63 (1):115 - 138 (1985)

Add citations

You must login to add citations.
  1. Bertrand’s Paradox and the Principle of Indifference.Nicholas Shackel - 2023 - Abingdon: Routledge.
    Events between which we have no epistemic reason to discriminate have equal epistemic probabilities. Bertrand’s chord paradox, however, appears to show this to be false, and thereby poses a general threat to probabilities for continuum sized state spaces. Articulating the nature of such spaces involves some deep mathematics and that is perhaps why the recent literature on Bertrand’s Paradox has been almost entirely from mathematicians and physicists, who have often deployed elegant mathematics of considerable sophistication. At the same time, the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Bertrand's Paradox and the Maximum Entropy Principle.Nicholas Shackel & Darrell P. Rowbottom - 2019 - Philosophy and Phenomenological Research 101 (3):505-523.
    An important suggestion of objective Bayesians is that the maximum entropy principle can replace a principle which is known to get into paradoxical difficulties: the principle of indifference. No one has previously determined whether the maximum entropy principle is better able to solve Bertrand’s chord paradox than the principle of indifference. In this paper I show that it is not. Additionally, the course of the analysis brings to light a new paradox, a revenge paradox of the chords, that is unique (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Brandeis Dice Problem and Statistical Mechanics.Steven J. van Enk - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 48 (1):1-6.
  • Can the maximum entropy principle be explained as a consistency requirement?Jos Uffink - 1995 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 26 (3):223-261.
    The principle of maximum entropy is a general method to assign values to probability distributions on the basis of partial information. This principle, introduced by Jaynes in 1957, forms an extension of the classical principle of insufficient reason. It has been further generalized, both in mathematical formulation and in intended scope, into the principle of maximum relative entropy or of minimum information. It has been claimed that these principles are singled out as unique methods of statistical inference that agree with (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   27 citations  
  • The constraint rule of the maximum entropy principle.Jos Uffink - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (1):47-79.
    The principle of maximum entropy is a method for assigning values to probability distributions on the basis of partial information. In usual formulations of this and related methods of inference one assumes that this partial information takes the form of a constraint on allowed probability distributions. In practical applications, however, the information consists of empirical data. A constraint rule is then employed to construct constraints on probability distributions out of these data. Usually one adopts the rule that equates the expectation (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  • Randomness? What Randomness?Klaas Landsman - 2020 - Foundations of Physics 50 (2):61-104.
    This is a review of the issue of randomness in quantum mechanics, with special emphasis on its ambiguity; for example, randomness has different antipodal relationships to determinism, computability, and compressibility. Following a philosophical discussion of randomness in general, I argue that deterministic interpretations of quantum mechanics are strictly speaking incompatible with the Born rule. I also stress the role of outliers, i.e. measurement outcomes that are not 1-random. Although these occur with low probability, their very existence implies that the no-signaling (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Objective Bayesian Probability that an Unknown Positive Real Variable Is Greater Than a Known Is 1/2.Christopher D. Fiorillo & Sunil L. Kim - 2021 - Philosophies 6 (1):24.
    If there are two dependent positive real variables x1 and x2, and only x1 is known, what is the probability that x2 is larger versus smaller than x1? There is no uniquely correct answer according to “frequentist” and “subjective Bayesian” definitions of probability. Here we derive the answer given the “objective Bayesian” definition developed by Jeffreys, Cox, and Jaynes. We declare the standard distance metric in one dimension, d(A,B)≡|A−B|, and the uniform prior distribution, as axioms. If neither variable is known, (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Countable additivity and the de finetti lottery.Paul Bartha - 2004 - British Journal for the Philosophy of Science 55 (2):301-321.
    De Finetti would claim that we can make sense of a draw in which each positive integer has equal probability of winning. This requires a uniform probability distribution over the natural numbers, violating countable additivity. Countable additivity thus appears not to be a fundamental constraint on subjective probability. It does, however, seem mandated by Dutch Book arguments similar to those that support the other axioms of the probability calculus as compulsory for subjective interpretations. These two lines of reasoning can be (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  • Philosophy of Quantum Probability - An empiricist study of its formalism and logic.Ronnie Hermens - unknown
    The use of probability theory is widespread in our daily life as well as in scientific theories. In virtually all cases, calculations can be carried out within the framework of classical probability theory. A special exception is given by quantum mechanics, which gives rise to a new probability theory: quantum probability theory. This dissertation deals with the question of how this formalism can be understood from a philosophical and physical perspective. The dissertation is divided into three parts. In the first (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark