Switch to: References

Add citations

You must login to add citations.
  1. Some consequences of Rado’s selection lemma.Marianne Morillon - 2012 - Archive for Mathematical Logic 51 (7-8):739-749.
    We prove in set theory without the Axiom of Choice, that Rado’s selection lemma (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{RL}}$$\end{document}) implies the Hahn-Banach axiom. We also prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{RL}}$$\end{document} is equivalent to several consequences of the Tychonov theorem for compact Hausdorff spaces: in particular, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{RL}}$$\end{document} implies that every filter on a well orderable set is included in a ultrafilter. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Multiple choices imply the ingleton and krein–milman axioms.Marianne Morillon - 2020 - Journal of Symbolic Logic 85 (1):439-455.
    In set theory without the Axiom of Choice, we consider Ingleton’s axiom which is the ultrametric counterpart of the Hahn–Banach axiom. We show that in ZFA, i.e., in the set theory without the Axiom of Choice weakened to allow “atoms,” Ingleton’s axiom does not imply the Axiom of Choice. We also prove that in ZFA, the “multiple choice” axiom implies the Krein–Milman axiom. We deduce that, in ZFA, the conjunction of the Hahn–Banach, Ingleton and Krein–Milman axioms does not imply the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • On a variant of Rado’s selection lemma and its equivalence with the Boolean prime ideal theorem.Paul Howard & Eleftherios Tachtsis - 2014 - Archive for Mathematical Logic 53 (7-8):825-833.
    We establish that, in ZF, the statementRLT: Given a setIand a non-empty setF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document}of non-empty elementary closed subsets of 2Isatisfying the fip, ifF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document}has a choice function, then⋂F≠∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bigcap\mathcal{F} \ne \emptyset}$$\end{document},which was introduced in Morillon :739–749, 2012), is equivalent to the Boolean Prime Ideal Theorem. The result provides, on one hand, an affirmative answer to Morillon’s corresponding (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark