Switch to: References

Add citations

You must login to add citations.
  1. C. S. Peirce and Intersemiotic Translation.Joao Queiroz & Daniella Aguiar - 2015 - In Peter Pericles Trifonas (ed.), International Handbook of Semiotics. Dordrecht: Springer. pp. 201-215.
    Intersemiotic translation (IT) was defined by Roman Jakobson (The Translation Studies Reader, Routledge, London, p. 114, 2000) as “transmutation of signs”—“an interpretation of verbal signs by means of signs of nonverbal sign systems.” Despite its theoretical relevance, and in spite of the frequency in which it is practiced, the phenomenon remains virtually unexplored in terms of conceptual modeling, especially from a semiotic perspective. Our approach is based on two premises: (i) IT is fundamentally a semiotic operation process (semiosis) and (ii) (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Computation without representation.Gualtiero Piccinini - 2008 - Philosophical Studies 137 (2):205-241.
    The received view is that computational states are individuated at least in part by their semantic properties. I offer an alternative, according to which computational states are individuated by their functional properties. Functional properties are specified by a mechanistic explanation without appealing to any semantic properties. The primary purpose of this paper is to formulate the alternative view of computational individuation, point out that it supports a robust notion of computational explanation, and defend it on the grounds of how computational (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   103 citations  
  • The Explanatory Role of Computation in Cognitive Science.Nir Fresco - 2012 - Minds and Machines 22 (4):353-380.
    Which notion of computation (if any) is essential for explaining cognition? Five answers to this question are discussed in the paper. (1) The classicist answer: symbolic (digital) computation is required for explaining cognition; (2) The broad digital computationalist answer: digital computation broadly construed is required for explaining cognition; (3) The connectionist answer: sub-symbolic computation is required for explaining cognition; (4) The computational neuroscientist answer: neural computation (that, strictly, is neither digital nor analogue) is required for explaining cognition; (5) The extreme (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Who am I? What is it? The subject-object relation.Sunny Auyang - manuscript
    Mind is not some mysterious mind stuff; no such stuff exists and the universe comprises only physical matter. It is an emergent property of certain complex material entities, not brains alone but whole human beings living and coping in the physical and social world. This thesis involves three ideas: materialism, emergent properties, and intentionality. The first two belong to the mind-body problem and the status of mental properties in the material universe. The third refers to the mind-world relation, the symbiotic (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Inference and the structure of concepts.Matías Osta Vélez - 2020 - Dissertation, Ludwig Maximilians Universität, München
    This thesis studies the role of conceptual content in inference and reasoning. The first two chapters offer a theoretical and historical overview of the relation between inference and meaning in philosophy and psychology. In particular, a critical analysis of the formality thesis, i.e., the idea that rational inference is a rule-based and topic-neutral mechanism, is advanced. The origins of this idea in logic and its influence in philosophy and cognitive psychology are discussed. Chapter 3 consists of an analysis of the (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark