Switch to: References

Add citations

You must login to add citations.
  1. Shadows of Syntax: Revitalizing Logical and Mathematical Conventionalism.Jared Warren - 2020 - New York, USA: Oxford University Press.
    What is the source of logical and mathematical truth? This book revitalizes conventionalism as an answer to this question. Conventionalism takes logical and mathematical truth to have their source in linguistic conventions. This was an extremely popular view in the early 20th century, but it was never worked out in detail and is now almost universally rejected in mainstream philosophical circles. Shadows of Syntax is the first book-length treatment and defense of a combined conventionalist theory of logic and mathematics. It (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Computation in Physical Systems.Gualtiero Piccinini - 2010 - Stanford Encyclopedia of Philosophy.
  • Malament–Hogarth Machines and Tait’s Axiomatic Conception of Mathematics.Sharon Berry - 2014 - Erkenntnis 79 (4):893-907.
    In this paper I will argue that Tait’s axiomatic conception of mathematics implies that it is in principle impossible to be justified in believing a mathematical statement without being justified in believing that statement to be provable. I will then show that there are possible courses of experience which would justify acceptance of a mathematical statement without justifying belief that this statement is provable.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Physical Church–Turing Thesis: Modest or Bold?Gualtiero Piccinini - 2011 - British Journal for the Philosophy of Science 62 (4):733-769.
    This article defends a modest version of the Physical Church-Turing thesis (CT). Following an established recent trend, I distinguish between what I call Mathematical CT—the thesis supported by the original arguments for CT—and Physical CT. I then distinguish between bold formulations of Physical CT, according to which any physical process—anything doable by a physical system—is computable by a Turing machine, and modest formulations, according to which any function that is computable by a physical system is computable by a Turing machine. (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  • The Dependence of Computability on Numerical Notations.Ethan Brauer - 2020 - Synthese 198 (11):10485-10511.
    Which function is computed by a Turing machine will depend on how the symbols it manipulates are interpreted. Further, by invoking bizarre systems of notation it is easy to define Turing machines that compute textbook examples of uncomputable functions, such as the solution to the decision problem for first-order logic. Thus, the distinction between computable and uncomputable functions depends on the system of notation used. This raises the question: which systems of notation are the relevant ones for determining whether a (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Buttresses of the Turing Barrier.Paolo Cotogno - 2015 - Acta Analytica 30 (3):275-282.
    The ‘Turing barrier’ is an evocative image for 0′, the degree of the unsolvability of the halting problem for Turing machines—equivalently, of the undecidability of Peano Arithmetic. The ‘barrier’ metaphor conveys the idea that effective computability is impaired by restrictions that could be removed by infinite methods. Assuming that the undecidability of PA is essentially depending on the finite nature of its computational means, decidability would be restored by the ω-rule. Hypercomputation, the hypothetical realization of infinitary machines through relativistic and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Do Accelerating Turing Machines Compute the Uncomputable?B. Jack Copeland & Oron Shagrir - 2011 - Minds and Machines 21 (2):221-239.
    Accelerating Turing machines have attracted much attention in the last decade or so. They have been described as “the work-horse of hypercomputation”. But do they really compute beyond the “Turing limit”—e.g., compute the halting function? We argue that the answer depends on what you mean by an accelerating Turing machine, on what you mean by computation, and even on what you mean by a Turing machine. We show first that in the current literature the term “accelerating Turing machine” is used (...)
    Direct download (14 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Time Travel: Probability and Impossibility By Nikk Effingham.Alasdair Richmond - 2020 - Analysis 80 (4):837-839.
    Time Travel: Probability and Impossibility By EffinghamNikkOxford University Press, 2020. 256 pp.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • SAD Computers and Two Versions of the Church–Turing Thesis.Tim Button - 2009 - British Journal for the Philosophy of Science 60 (4):765-792.
    Recent work on hypercomputation has raised new objections against the Church–Turing Thesis. In this paper, I focus on the challenge posed by a particular kind of hypercomputer, namely, SAD computers. I first consider deterministic and probabilistic barriers to the physical possibility of SAD computation. These suggest several ways to defend a Physical version of the Church–Turing Thesis. I then argue against Hogarth's analogy between non-Turing computability and non-Euclidean geometry, showing that it is a non-sequitur. I conclude that the Effective version (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • Effective Physical Processes and Active Information in Quantum Computing.Ignazio Licata - 2007 - Quantum Biosystems 1 (1):51-65.
    The recent debate on hypercomputation has raised new questions both on the computational abilities of quantum systems and the Church-Turing Thesis role in Physics.We propose here the idea of “effective physical process” as the essentially physical notion of computation. By using the Bohm and Hiley active information concept we analyze the differences between the standard form (quantum gates) and the non-standard one (adiabatic and morphogenetic) of Quantum Computing, and we point out how its Super-Turing potentialities derive from an incomputable information (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Time Travel: Probability and Impossibility By Nikk Effingham Oxford University Press, 2020. 256 Pp. [REVIEW]Alasdair Richmond - forthcoming - Analysis.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Supertasks and Arithmetical Truth.Jared Warren & Daniel Waxman - 2020 - Philosophical Studies 177 (5):1275-1282.
    This paper discusses the relevance of supertask computation for the determinacy of arithmetic. Recent work in the philosophy of physics has made plausible the possibility of supertask computers, capable of running through infinitely many individual computations in a finite time. A natural thought is that, if supertask computers are possible, this implies that arithmetical truth is determinate. In this paper we argue, via a careful analysis of putative arguments from supertask computations to determinacy, that this natural thought is mistaken: supertasks (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Physical Computation: How General Are Gandy’s Principles for Mechanisms?B. Jack Copeland & Oron Shagrir - 2007 - Minds and Machines 17 (2):217-231.
    What are the limits of physical computation? In his ‘Church’s Thesis and Principles for Mechanisms’, Turing’s student Robin Gandy proved that any machine satisfying four idealised physical ‘principles’ is equivalent to some Turing machine. Gandy’s four principles in effect define a class of computing machines (‘Gandy machines’). Our question is: What is the relationship of this class to the class of all (ideal) physical computing machines? Gandy himself suggests that the relationship is identity. We do not share this view. We (...)
    Direct download (13 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Discrete Transfinite Computation Models.Philip D. Welch - 2011 - In S. B. Cooper & Andrea Sorbi (eds.), Computability in Context: Computation and Logic in the Real World. World Scientific. pp. 375--414.
  • On Floridi’s Method of Levels of Abstraction.Jan van Leeuwen - 2014 - Minds and Machines 24 (1):5-17.
    ion is arguably one of the most important methods in modern science in analysing and understanding complex phenomena. In his book The Philosophy of Information, Floridi (The philosophy of information. Oxford University Press, Oxford, 2011) presents the method of levels of abstraction as the main method of the Philosophy of Information. His discussion of abstraction as a method seems inspired by the formal methods and frameworks of computer science, in which abstraction is operationalised extensively in programming languages and design methodologies. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Note on the Physical Possibility of Transfinite Computation.Wayne Aitken & Jeffrey A. Barrett - 2010 - British Journal for the Philosophy of Science 61 (4):867-874.
    In this note, we consider constraints on the physical possibility of transfinite Turing machines that arise from how one models the continuous structure of space and time in one's best physical theories. We conclude by suggesting a version of Church's thesis appropriate as an upper bound for physical computation given how space and time are modeled on our current physical theories.
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark  
  • The Extent of Computation in Malament–Hogarth Spacetimes.P. D. Welch - 2008 - British Journal for the Philosophy of Science 59 (4):659-674.
    We analyse the extent of possible computations following Hogarth ([2004]) conducted in Malament–Hogarth (MH) spacetimes, and Etesi and Németi ([2002]) in the special subclass containing rotating Kerr black holes. Hogarth ([1994]) had shown that any arithmetic statement could be resolved in a suitable MH spacetime. Etesi and Németi ([2002]) had shown that some relations on natural numbers that are neither universal nor co-universal, can be decided in Kerr spacetimes, and had asked specifically as to the extent of computational limits there. (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • First-Order Logic Foundation of Relativity Theories.Judit X. Madarasz, Istvan Nemeti & Gergely Szekely - unknown
    Motivation and perspective for an exciting new research direction interconnecting logic, spacetime theory, relativity--including such revolutionary areas as black hole physics, relativistic computers, new cosmology--are presented in this paper. We would like to invite the logician reader to take part in this grand enterprise of the new century. Besides general perspective and motivation, we present initial results in this direction.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • A Física da Terminação.José Félix Costa - 2016 - Kairos 16 (1):14-60.
    Sumário Mostramos que, em virtude dos limites teóricos da computação, nem toda a ciência formulada com carácter preditivo pode ser simulada. Em particular, evidencia- se que a Fisica Clássica, nomeadamente a Físíca Newtoniana, padece deste mal, encerrando processos de Zenão.
    No categories
    Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • Twin Paradox and the Logical Foundation of Relativity Theory.Judit X. Madarász, István Németi & Gergely Székely - 2006 - Foundations of Physics 36 (5):681-714.
    We study the foundation of space-time theory in the framework of first-order logic (FOL). Since the foundation of mathematics has been successfully carried through (via set theory) in FOL, it is not entirely impossible to do the same for space-time theory (or relativity). First we recall a simple and streamlined FOL-axiomatization Specrel of special relativity from the literature. Specrel is complete with respect to questions about inertial motion. Then we ask ourselves whether we can prove the usual relativistic properties of (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   9 citations