Switch to: References

Add citations

You must login to add citations.
  1. Shadows of Syntax: Revitalizing Logical and Mathematical Conventionalism.Jared Warren - 2020 - New York, USA: Oxford University Press.
    What is the source of logical and mathematical truth? This book revitalizes conventionalism as an answer to this question. Conventionalism takes logical and mathematical truth to have their source in linguistic conventions. This was an extremely popular view in the early 20th century, but it was never worked out in detail and is now almost universally rejected in mainstream philosophical circles. Shadows of Syntax is the first book-length treatment and defense of a combined conventionalist theory of logic and mathematics. It (...)
  • Characterizations of ordinal analysis.James Walsh - 2023 - Annals of Pure and Applied Logic 174 (4):103230.
    Ordinal analysis is a research program wherein recursive ordinals are assigned to axiomatic theories. According to conventional wisdom, ordinal analysis measures the strength of theories. Yet what is the attendant notion of strength? In this paper we present abstract characterizations of ordinal analysis that address this question. -/- First, we characterize ordinal analysis as a partition of $\Sigma^1_1$-definable and $\Pi^1_1$-sound theories, namely, the partition whereby two theories are equivalent if they have the same proof-theoretic ordinal. We show that no equivalence (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Why Believe Infinite Sets Exist?Andrei Mărăşoiu - 2018 - Axiomathes 28 (4):447-460.
    The axiom of infinity states that infinite sets exist. I will argue that this axiom lacks justification. I start by showing that the axiom is not self-evident, so it needs separate justification. Following Maddy’s :481–511, 1988) distinction, I argue that the axiom of infinity lacks both intrinsic and extrinsic justification. Crucial to my project is Skolem’s From Frege to Gödel: a source book in mathematical logic, 1879–1931, Cambridge, Harvard University Press, pp. 290–301, 1922) distinction between a theory of real sets, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Extending the Non-extendible: Shades of Infinity in Large Cardinals and Forcing Theories.Stathis Livadas - 2018 - Axiomathes 28 (5):565-586.
    This is an article whose intended scope is to deal with the question of infinity in formal mathematics, mainly in the context of the theory of large cardinals as it has developed over time since Cantor’s introduction of the theory of transfinite numbers in the late nineteenth century. A special focus has been given to this theory’s interrelation with the forcing theory, introduced by P. Cohen in his lectures of 1963 and further extended and deepened since then, which leads to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark