Switch to: References

Add citations

You must login to add citations.
  1. Cohen forcing and inner models.Jonas Reitz - 2020 - Mathematical Logic Quarterly 66 (1):65-72.
    Given an inner model and a regular cardinal κ, we consider two alternatives for adding a subset to κ by forcing: the Cohen poset Add(κ, 1), and the Cohen poset of the inner model. The forcing from W will be at least as strong as the forcing from V (in the sense that forcing with the former adds a generic for the latter) if and only if the two posets have the same cardinality. On the other hand, a sufficient condition (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Maximality Principles in Set Theory.Luca Incurvati - 2017 - Philosophia Mathematica 25 (2):159-193.
    In set theory, a maximality principle is a principle that asserts some maximality property of the universe of sets or some part thereof. Set theorists have formulated a variety of maximality principles in order to settle statements left undecided by current standard set theory. In addition, philosophers of mathematics have explored maximality principles whilst attempting to prove categoricity theorems for set theory or providing criteria for selecting foundational theories. This article reviews recent work concerned with the formulation, investigation and justification (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • The modal logic of inner models.Tanmay Inamdar & Benedikt Löwe - 2016 - Journal of Symbolic Logic 81 (1):225-236.
  • On a class of maximality principles.Daisuke Ikegami & Nam Trang - 2018 - Archive for Mathematical Logic 57 (5-6):713-725.
    We study various classes of maximality principles, \\), introduced by Hamkins :527–550, 2003), where \ defines a class of forcing posets and \ is an infinite cardinal. We explore the consistency strength and the relationship of \\) with various forcing axioms when \. In particular, we give a characterization of bounded forcing axioms for a class of forcings \ in terms of maximality principles MP\\) for \ formulas. A significant part of the paper is devoted to studying the principle MP\\) (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Tall cardinals.Joel D. Hamkins - 2009 - Mathematical Logic Quarterly 55 (1):68-86.
    A cardinal κ is tall if for every ordinal θ there is an embedding j: V → M with critical point κ such that j > θ and Mκ ⊆ M. Every strong cardinal is tall and every strongly compact cardinal is tall, but measurable cardinals are not necessarily tall. It is relatively consistent, however, that the least measurable cardinal is tall. Nevertheless, the existence of a tall cardinal is equiconsistent with the existence of a strong cardinal. Any tall cardinal (...)
    Direct download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Closed maximality principles: implications, separations and combinations.Gunter Fuchs - 2008 - Journal of Symbolic Logic 73 (1):276-308.
    l investigate versions of the Maximality Principles for the classes of forcings which are <κ-closed. <κ-directed-closed, or of the form Col (κ. <Λ). These principles come in many variants, depending on the parameters which are allowed. I shall write MPΓ(A) for the maximality principle for forcings in Γ, with parameters from A. The main results of this paper are: • The principles have many consequences, such as <κ-closed-generic $\Sigma _{2}^{1}(H_{\kappa})$ absoluteness, and imply. e.g., that ◇κ holds. I give an application (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Can modalities save naive set theory?Peter Fritz, Harvey Lederman, Tiankai Liu & Dana Scott - 2018 - Review of Symbolic Logic 11 (1):21-47.
  • Equivalence relations which are borel somewhere.William Chan - 2017 - Journal of Symbolic Logic 82 (3):893-930.
    The following will be shown: Let I be a σ-ideal on a Polish space X so that the associated forcing of I+${\bf{\Delta }}_1^1$ sets ordered by ⊆ is a proper forcing. Let E be a ${\bf{\Sigma }}_1^1$ or a ${\bf{\Pi }}_1^1$ equivalence relation on X with all equivalence classes ${\bf{\Delta }}_1^1$. If for all $z \in {H_{{{\left}^ + }}}$, z♯ exists, then there exists an I+${\bf{\Delta }}_1^1$ set C ⊆ X such that E ↾ C is a ${\bf{\Delta }}_1^1$ equivalence (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark