Switch to: References

Add citations

You must login to add citations.
  1. The causal axioms of algebraic quantum field theory: A diagnostic.Francisco Calderón - 2024 - Studies in History and Philosophy of Science Part A 104 (C):98-108.
    Algebraic quantum field theory (AQFT) puts forward three ``causal axioms'' that aim to characterize the theory as one that implements relativistic causation: the spectrum condition, microcausality, and primitive causality. In this paper, I aim to show, in a minimally technical way, that none of them fully explains the notion of causation appropriate for AQFT because they only capture some of the desiderata for relativistic causation I state or because it is often unclear how each axiom implements its respective desideratum. After (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Restoring particle phenomenology.Giovanni Valente - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 51:97-103.
  • Localizable Particles in the Classical Limit of Quantum Field Theory.Rory Soiffer, Jonah Librande & Benjamin H. Feintzeig - 2021 - Foundations of Physics 51 (2):1-31.
    A number of arguments purport to show that quantum field theory cannot be given an interpretation in terms of localizable particles. We show, in light of such arguments, that the classical ħ→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar \rightarrow 0$$\end{document} limit can aid our understanding of the particle content of quantum field theories. In particular, we demonstrate that for the massive Klein–Gordon field, the classical limits of number operators can be understood to encode local information about particles (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Localization and the interface between quantum mechanics, quantum field theory and quantum gravity I.Bert Schroer - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 41 (2):104-127.
    It is shown that there are significant conceptual differences between QM and QFT which make it difficult to view the latter as just a relativistic extension of the principles of QM. At the root of this is a fundamental distiction between Born-localization in QM (which in the relativistic context changes its name to Newton–Wigner localization) and modular localization which is the localization underlying QFT, after one separates it from its standard presentation in terms of field coordinates. The first comes with (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • What is a wavefunction.Wayne C. Myrvold - 2015 - Synthese 192 (10):3247-3274.
    Much of the the discussion of the metaphysics of quantum mechanics focusses on the status of wavefunctions. This paper is about how to think about wavefunctions, when we bear in mind that quantum mechanics—that is, the nonrelativistic quantum theory of systems of a fixed, finite number of degrees of freedom—is not a fundamental theory, but arises, in a certain approximation, valid in a limited regime, from a relativistic quantum field theory. We will explicitly show how the wavefunctions of quantum mechanics, (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   28 citations  
  • The standard model as a philosophical challenge.Edward MacKinnon - 2008 - Philosophy of Science 75 (4):447-457.
    There are two opposing traditions in contemporary quantum field theory (QFT). Mainstream Lagrangian QFT led to and supports the standard model of particle interactions. Algebraic QFT seeks to provide a rigorous consistent mathematical foundation for field theory, but cannot accommodate the local gauge interactions of the standard model. Interested philosophers face a choice. They can accept algebraic QFT on the grounds of mathematical consistency and general accord with the semantic conception of theory interpretation. This suggests a rejection of particle ontology. (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Structure of Scientific Theory Change: Models versus Privileged Formulations.James Mattingly - 2005 - Philosophy of Science 72 (2):365-389.
    Two views of scientific theories dominated the philosophy of science during the twentieth century, the syntactic view of the logical empiricists and the semantic view of their successors. I show that neither view is adequate to provide a proper understanding of the connections that exist between theories at different times. I outline a new approach, a hybrid of the two, that provides the right structural connection between earlier and later theories, and that takes due account of the importance of the (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • No place for particles in relativistic quantum theories?Hans Halvorson & Rob Clifton - 2002 - Philosophy of Science 69 (1):1-28.
    David Malament (1996) has recently argued that there can be no relativistic quantum theory of (localizable) particles. We consider and rebut several objections that have been made against the soundness of Malament’s argument. We then consider some further objections that might be made against the generality of Malament’s conclusion, and we supply three no‐go theorems to counter these objections. Finally, we dispel potential worries about the counterintuitive nature of these results by showing that relativistic quantum field theory itself explains the (...)
    Direct download (15 more)  
     
    Export citation  
     
    Bookmark   92 citations  
  • Relativistic Causality in Algebraic Quantum Field Theory.John Earman & Giovanni Valente - 2014 - International Studies in the Philosophy of Science 28 (1):1-48.
    This paper surveys the issue of relativistic causality within the framework of algebraic quantum field theory . In doing so, we distinguish various notions of causality formulated in the literature and study their relationships, and thereby we offer what we hope to be a useful taxonomy. We propose that the most direct expression of relativistic causality in AQFT is captured not by the spectrum condition but rather by the axiom of local primitive causality, in that it entails a form of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • The ‘Jericho effect’ and Hegerfeldt non-locality.Talal A. Debs & Michael L. G. Redhead - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (1):61-85.
  • Entanglement and Open Systems in Algebraic Quantum Field Theory.Rob Clifton & Hans Halvorson - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (1):1-31.
    Entanglement has long been the subject of discussion by philosophers of quantum theory, and has recently come to play an essential role for physicists in their development of quantum information theory. In this paper we show how the formalism of algebraic quantum field theory (AQFT) provides a rigorous framework within which to analyse entanglement in the context of a fully relativistic formulation of quantum theory. What emerges from the analysis are new practical and theoretical limitations on an experimenter's ability to (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   45 citations  
  • Are Rindler Quanta Real? Inequivalent Particle Concepts in Quantum Field Theory.Rob Clifton & Hans Halvorson - 2001 - British Journal for the Philosophy of Science 52 (3):417-470.
    Philosophical reflection on quantum field theory has tended to focus on how it revises our conception of what a particle is. However, there has been relatively little discussion of the threat to the "reality" of particles posed by the possibility of inequivalent quantizations of a classical field theory, i.e., inequivalent representations of the algebra of observables of the field in terms of operators on a Hilbert space. The threat is that each representation embodies its own distinctive conception of what a (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   72 citations  
  • Quantum field theories in classical spacetimes and particles.Jonathan Bain - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (2):98-106.
    According to a Received View, relativistic quantum field theories (RQFTs) do not admit particle interpretations. This view requires that particles be localizable and countable, and that these characteristics be given mathematical expression in the forms of local and unique total number operators. Various results (the Reeh-Schlieder theorem, the Unruh Effect, Haag's theorem) then indicate that formulations of RQFTs do not support such operators. These results, however, do not hold for nonrelativistic QFTs. I argue that this is due to the absolute (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Emergence of particles from bosonic quantum field theory.David Wallace - manuscript
    An examination is made of the way in which particles emerge from linear, bosonic, massive quantum field theories. Two different constructions of the one-particle subspace of such theories are given, both illustrating the importance of the interplay between the quantum-mechanical linear structure and the classical one. Some comments are made on the Newton-Wigner representation of one-particle states, and on the relationship between the approach of this paper and those of Segal, and of Haag and Ruelle.
    Direct download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Against Wavefunction Realism.David Wallace - unknown
    I argue that wavefunction realism --- the view that quantum mechanics reveals the fundamental ontology of the world to be a field on a high-dimensional spacetime, must be rejected as relying on artefacts of too-simple versions of quantum mechanics, and not conceptually well-motivated even were those too-simple versions exactly correct. I end with some brief comments on the role of spacetime in any satisfactory account of the metaphysics of extant quantum theories.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Locality, localization, and the particle concept: Topics in the foundations of quantum field theory.Hans Halvorson - 2001 - Dissertation, University of Pittsburgh
    This dissertation reconsiders some traditional issues in the foundations of quantum mechanics in the context of relativistic quantum field theory (RQFT); and it considers some novel foundational issues that arise first in the context of RQFT. The first part of the dissertation considers quantum nonlocality in RQFT. Here I show that the generic state of RQFT displays Bell correlations relative to measurements performed in any pair of spacelike separated regions, no matter how distant. I also show that local systems in (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation