Switch to: References

Citations of:

Algebraic quantum field theory

In J. Butterfield & J. Earman (eds.), Handbook of the philosophy of physics. Kluwer Academic Publishers (2006)

Add citations

You must login to add citations.
  1. Scientific Realism Made Effective.Porter Williams - 2019 - British Journal for the Philosophy of Science 70 (1):209-237.
    I argue that a common philosophical approach to the interpretation of physical theories—particularly quantum field theories—has led philosophers astray. It has driven many to declare the quantum field theories employed by practicing physicists, so-called ‘effective field theories’, to be unfit for philosophical interpretation. In particular, such theories have been deemed unable to support a realist interpretation. I argue that these claims are mistaken: attending to the manner in which these theories are employed in physical practice, I show that interpreting effective (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   39 citations  
  • CPT Invariance, the Spin-Statistics Connection, and the Ontology of Relativistic Quantum Field Theories.Jonathan Bain - 2013 - Erkenntnis 78 (4):797-821.
    CPT invariance and the spin-statistics connection are typically taken to be essential properties in relativistic quantum field theories (RQFTs), insofar as the CPT and Spin-Statistics theorems entail that any state of a physical system characterized by an RQFT must possess these properties. Moreover, in the physics literature, they are typically taken to be properties of particles. But there is a Received View among philosophers that RQFTs cannot fundamentally be about particles. This essay considers what proofs of the CPT and Spin-Statistics (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Quantum Theory of Fields.David Wallace - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    I give an introduction to the conceptual structure of quantum field theory as it is used in mainstream theoretical physics today, aimed at non-specialists. My main focuses in the article are the common structure of quantum field theory as it is applied in solid-state physics and as it is applied in high-energy physics; the modern theory of renormalisation.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Taking particle physics seriously: A critique of the algebraic approach to quantum field theory.David Wallace - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (2):116-125.
    I argue against the currently prevalent view that algebraic quantum field theory (AQFT) is the correct framework for philosophy of quantum field theory and that “conventional” quantum field theory (CQFT), of the sort used in mainstream particle physics, is not suitable for foundational study. In doing so, I defend that position that AQFT and CQFT should be understood as rival programs to resolve the mathematical and physical pathologies of renormalization theory, and that CQFT has succeeded in this task and AQFT (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   68 citations  
  • A philosopher's guide to the foundations of quantum field theory.Noel Swanson - 2017 - Philosophy Compass 12 (5):e12414.
    A major obstacle facing interpreters of quantum field theory is a proliferation of different theoretical frameworks. This article surveys three of the main available options—Lagrangian, Wightman, and algebraic QFT—and examines how they are related. Although each framework emphasizes different aspects of QFT, leading to distinct strengths and weaknesses, there is less tension between them than commonly assumed. Given the limitations of our current knowledge and the need for creative new ideas, I urge philosophers to explore puzzles, tools, and techniques from (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Constraining the Higgs Mechanism: Ontological Worries and the Prospects for an Algebraic Cure.Michael Stöltzner - 2012 - Philosophy of Science 79 (5):930-941.
    I discuss Earman's program to achieve an objective account of the Higgs mechanism within the C∗ algebraic approach to quantum field theory. Pointing to three results obtained within this approach, I argue that if one follows Earman and understands the Higgs mechanism as a constraint, it appears to be a genuine quantum phenomenon that does not simply arise through the correspondence principle. This casts further this casts doubts on the validity of the Dirac conjecture that identifies first-class constraints and gauge (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Is the classical limit “singular”?Jer Steeger & Benjamin H. Feintzeig - 2021 - Studies in History and Philosophy of Science Part A 88 (C):263-279.
    We argue against claims that the classical ℏ → 0 limit is “singular” in a way that frustrates an eliminative reduction of classical to quantum physics. We show one precise sense in which quantum mechanics and scaling behavior can be used to recover classical mechanics exactly, without making prior reference to the classical theory. To do so, we use the tools of strict deformation quantization, which provides a rigorous way to capture the ℏ → 0 limit. We then use the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Empirical Underdetermination for Physical Theories in C* Algebraic Setting: Comments to an Arageorgis's Argument.Chrysovalantis Stergiou - 2020 - Foundations of Physics 50 (9):877-892.
    In this paper, I reconstruct an argument of Aristidis Arageorgis against empirical underdetermination of the state of a physical system in a C*-algebraic setting and explore its soundness. The argument, aiming against algebraic imperialism, the operationalist attitude which characterized the first steps of Algebraic Quantum Field Theory, is based on two topological properties of the state space: being T1 and being first countable in the weak*-topology. The first property is possessed trivially by the state space while the latter is highly (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Trope ontology and algebraic quantum field theory: An Evaluation of Kuhlmann's proposal.Emanuele Rossanese - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (4):417-423.
    Meinard Kuhlmann has recently provided an interpretation of quantum field theory that seems to offer an alternative to the particle and field interpretations. The main idea is to adopt a trope ontology and, then, consider particles and fields as derivative entities. The aim of this paper is to discuss Kuhlmann's proposal. In the first part of the paper I will offer a reconstruction of his position. I will then show that this interpretation faces some problems about the distinction between essential (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • The economy of nature: the structure of evolution in Linnaeus, Darwin, and the modern synthesis.Charles H. Pence & Daniel G. Swaim - 2017 - European Journal for Philosophy of Science 8 (3):435-454.
    We argue that the economy of nature constitutes an invocation of structure in the biological sciences, one largely missed by philosophers of biology despite the turn in recent years toward structural explanations throughout the philosophy of science. We trace a portion of the history of this concept, beginning with the theologically and economically grounded work of Linnaeus, moving through Darwin’s adaptation of the economy of nature and its reconstitution in genetic terms during the first decades of the Modern Synthesis. What (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematical Structure and Empirical Content.Michael E. Miller - unknown - British Journal for the Philosophy of Science 74 (2):511-532.
    Approaches to the interpretation of physical theories provide accounts of how physical meaning accrues to the mathematical structure of a theory. According to many standard approaches to interpretation, meaning relations are captured by maps from the mathematical structure of the theory to statements expressing its empirical content. In this article I argue that while such accounts adequately address meaning relations when exact models are available or perturbation theory converges, they do not fare as well for models that give rise to (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Schwinger and the ontology of quantum field theory.Edward MacKinnon - 2007 - Foundations of Science 12 (4):295-323.
    An epistemological interpretation of quantum mechanics hinges on the claim that the distinctive features of quantum mechanics can be derived from some distinctive features of an observational basis. Old and new variations of this theme are listed. The program has a limited success in non-relativistic quantum mechanics. The crucial issue is how far it can be extended to quantum field theory without introducing significant ontological postulates. A C*-formulation covers algebraic quantum field theory, but not the standard model. Julian Schwinger’s anabatic (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Limits of Physical Equivalence in Algebraic Quantum Field Theory.Tracy Lupher - 2016 - British Journal for the Philosophy of Science 69 (2):553-576.
    Some physicists and philosophers argue that unitarily inequivalent representations in quantum field theory are mathematical surplus structure. Support for that view, sometimes called ‘algebraic imperialism’, relies on Fell’s theorem and its deployment in the algebraic approach to QFT. The algebraic imperialist uses Fell’s theorem to argue that UIRs are ‘physically equivalent’ to each other. The mathematical, conceptual, and dynamical aspects of Fell’s theorem will be examined. Its use as a criterion for physical equivalence is examined in detail and it is (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Interpretive strategies for deductively insecure theories: The case of early quantum electrodynamics.Bihui Li - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (4):395-403.
    I describe some interpretive strategies used by physicists in the development of quantum electrodynamics in the 1930s and 1940s, using Wimsatt's account of how to reason with false models as a guide. I call these “interpretive” strategies because they were used not just to derive empirical predictions, but also to derive information about the world besides the aforementioned predictions. These strategies were regarded as mathematically unrigorous, yet they were crucial to the development of a better theory of quantum electrodynamics. I (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Entanglement Structure of Quantum Field Systems.Vincent Lam - 2013 - International Studies in the Philosophy of Science 27 (1):59 - 72.
    This article discusses the peculiar features of quantum entanglement and quantum non-locality within the algebraic approach to relativistic quantum field theory (RQFT). The debate on the ontology of RQFT is considered in the light of these well-known but little discussed features. In particular, this article examines the ontic structural realist understanding of quantum entanglement and quantum non-locality and its contribution to this debate.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Why conceptual rigour matters to philosophy: On the ontological significance of algebraic quantum field theory. [REVIEW]Meinard Kuhlmann - 2010 - Foundations of Physics 40 (9-10):1625-1637.
    I argue that algebraic quantum field theory (AQFT) permits an undisturbed view of the right ontology for fundamental physics, whereas standard (or Lagrangian) QFT offers different mutually incompatible ontologies.My claim does not depend on the mathematical inconsistency of standard QFT but on the fact that AQFT has the same concerns as ontology, namely categorical parsimony and a clearly structured hierarchy of entities.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • Mathematical developments in the rise of Yang–Mills gauge theories.Adam Koberinski - 2019 - Synthese (Suppl 16):1-31.
    In this paper I detail three major mathematical developments that led to the emergence of Yang–Mills theories as the foundation for the standard model of particle physics. In less than 10 years, work on renormalizability, the renormalization group, and lattice quantum field theory highlighted the utility of Yang–Mills type models of quantum field theory by connecting poorly understood candidate dynamical models to emerging experimental results. I use this historical case study to provide lessons for theory construction in physics, and touch (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Pattern Recognition in Non-Kolmogorovian Structures.Federico Holik, Giuseppe Sergioli, Hector Freytes & Angelo Plastino - 2018 - Foundations of Science 23 (1):119-132.
    We present a generalization of the problem of pattern recognition to arbitrary probabilistic models. This version deals with the problem of recognizing an individual pattern among a family of different species or classes of objects which obey probabilistic laws which do not comply with Kolmogorov’s axioms. We show that such a scenario accommodates many important examples, and in particular, we provide a rigorous definition of the classical and the quantum pattern recognition problems, respectively. Our framework allows for the introduction of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bell inequality and common causal explanation in algebraic quantum field theory.Gábor Hofer-Szabó & Péter Vecsernyés - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (4):404-416.
    Bell inequalities, understood as constraints between classical conditional probabilities, can be derived from a set of assumptions representing a common causal explanation of classical correlations. A similar derivation, however, is not known for Bell inequalities in algebraic quantum field theories establishing constraints for the expectation of specific linear combinations of projections in a quantum state. In the paper we address the question as to whether a ‘common causal justification’ of these non-classical Bell inequalities is possible. We will show that although (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • A generalized definition of Bell’s local causality.Gábor Hofer-Szabó & Péter Vecsernyés - 2016 - Synthese 193 (10).
    This paper aims to implement Bell’s notion of local causality into a framework, called local physical theory, which is general enough to integrate both probabilistic and spatiotemporal concepts and also classical and quantum theories. Bell’s original idea of local causality will then arise as the classical case of our definition. First, we investigate what is needed for a local physical theory to be locally causal. Then we compare local causality with Reichenbach’s common cause principle and relate both to the Bell (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • The Ontology of Quantum Field Theory: Structural Realism Vindicated?David Glick - 2016 - Studies in History and Philosophy of Science Part A 59:78-86.
    In this paper I elicit a prediction from structural realism and compare it, not to a historical case, but to a contemporary scientific theory. If structural realism is correct, then we should expect physics to develop theories that fail to provide an ontology of the sort sought by traditional realists. If structure alone is responsible for instrumental success, we should expect surplus ontology to be eliminated. Quantum field theory (QFT) provides the framework for some of the best confirmed theories in (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Real Problem with Perturbative Quantum Field Theory.James D. Fraser - 2020 - British Journal for the Philosophy of Science 71 (2):391-413.
    The perturbative approach to quantum field theory has long been viewed with suspicion by philosophers of science. This article offers a diagnosis of its conceptual problems. Drawing on Norton’s discussion of the notion of approximation I argue that perturbative QFT ought to be understood as producing approximations without specifying an underlying QFT model. This analysis leads to a reassessment of common worries about perturbative QFT. What ends up being the key issue with the approach on this picture is not mathematical (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  • Unitary inequivalence in classical systems.Benjamin Feintzeig - 2016 - Synthese 193 (9).
    Ruetsche argues that a problem of unitarily inequivalent representations arises in quantum theories with infinitely many degrees of freedom. I provide an algebraic formulation of classical field theories and show that unitarily inequivalent representations arise there as well. I argue that the classical case helps us rule out one possible response to the problem of unitarily inequivalent representations called Hilbert Space Conservatism.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • Toward an Understanding of Parochial Observables.Benjamin Feintzeig - 2016 - British Journal for the Philosophy of Science:axw010.
    Ruetsche claims that an abstract C*-algebra of observables will not contain all of the physically significant observables for a quantum system with infinitely many degrees of freedom. This would signal that in addition to the abstract algebra, one must use Hilbert space representations for some purposes. I argue to the contrary that there is a way to recover all of the physically significant observables by purely algebraic methods. 1 Introduction2 Preliminaries3 Three Extremist Interpretations3.1 Algebraic imperialism3.2 Hilbert space conservatism3.3 Universalism4 Parochial (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  • Toward an Understanding of Parochial Observables.Benjamin Feintzeig - 2018 - British Journal for the Philosophy of Science 69 (1):161-191.
    ABSTRACT Ruetsche claims that an abstract C*-algebra of observables will not contain all of the physically significant observables for a quantum system with infinitely many degrees of freedom. This would signal that in addition to the abstract algebra, one must use Hilbert space representations for some purposes. I argue to the contrary that there is a way to recover all of the physically significant observables by purely algebraic methods. 1Introduction 2Preliminaries 3Three Extremist Interpretations 3.1Algebraic imperialism 3.2Hilbert space conservatism 3.3Universalism 4Parochial (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • Reductive Explanation and the Construction of Quantum Theories.Benjamin H. Feintzeig - 2022 - British Journal for the Philosophy of Science 73 (2):457-486.
    I argue that philosophical issues concerning reductive explanations help constrain the construction of quantum theories with appropriate state spaces. I illustrate this general proposal with two examples of restricting attention to physical states in quantum theories: regular states and symmetry-invariant states. 1Introduction2Background2.1 Physical states2.2 Reductive explanations3The Proposed ‘Correspondence Principle’4Example: Regularity5Example: Symmetry-Invariance6Conclusion: Heuristics and Discovery.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • On broken symmetries and classical systems.Benjamin Feintzeig - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):267-273.
  • On the Choice of Algebra for Quantization.Benjamin H. Feintzeig - 2018 - Philosophy of Science 85 (1):102-125.
    In this article, I examine the relationship between physical quantities and physical states in quantum theories. I argue against the claim made by Arageorgis that the approach to interpreting quantum theories known as Algebraic Imperialism allows for “too many states.” I prove a result establishing that the Algebraic Imperialist has very general resources that she can employ to change her abstract algebra of quantities in order to rule out unphysical states.
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Superselection Rules for Philosophers.John Earman - 2008 - Erkenntnis 69 (3):377-414.
    The overaraching goal of this paper is to elucidate the nature of superselection rules in a manner that is accessible to philosophers of science and that brings out the connections between superselection and some of the most fundamental interpretational issues in quantum physics. The formalism of von Neumann algebras is used to characterize three different senses of superselection rules (dubbed, weak, strong, and very strong) and to provide useful necessary and sufficient conditions for each sense. It is then shown how (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  • Relativistic Causality in Algebraic Quantum Field Theory.John Earman & Giovanni Valente - 2014 - International Studies in the Philosophy of Science 28 (1):1-48.
    This paper surveys the issue of relativistic causality within the framework of algebraic quantum field theory . In doing so, we distinguish various notions of causality formulated in the literature and study their relationships, and thereby we offer what we hope to be a useful taxonomy. We propose that the most direct expression of relativistic causality in AQFT is captured not by the spectrum condition but rather by the axiom of local primitive causality, in that it entails a form of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Spin and Statistics and First Principles.Sergio Doplicher - 2010 - Foundations of Physics 40 (7):719-732.
    It was shown in the early seventies that, in Local Quantum Theory (that is the most general formulation of Quantum Field Theory, if we leave out only the unknown scenario of Quantum Gravity) the notion of Statistics can be grounded solely on the local observable quantities (without assuming neither the commutation relations nor even the existence of unobservable charged field operators); one finds that only the well known (para)statistics of Bose/Fermi type are allowed by the key principle of local commutativity (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • On entanglement as a relation.Enrico Cinti, Alberto Corti & Marco Sanchioni - 2022 - European Journal for Philosophy of Science 12 (1):1-29.
    This paper aims to characterise properly entanglement as an external relation obtaining between multiple quantum degrees of freedom. In particular, we argue that the entanglement relation is a unique relation fully characterised by mutual information, i.e. a quantity standardly used as a measure of entanglement. This analysis leads us to propose a new metaphysical account of entanglement, which we call Relational Entanglement Tesseract. Such an account characterises entanglement for both bipartite and multipartite cases, and, at the same time, it satisfies (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Humeanism in light of quantum gravity.Enrico Cinti & Marco Sanchioni - 2021 - Synthese 199 (3-4):10839-10863.
    Quantum Theory and Humeanism have long been thought to be incompatible due to the irreducibility of the correlations involved in entangled states. In this paper, we reconstruct the tension between Humeanism and entanglement via the concept of causal structure, and provide a philosophical introduction to the ER=EPR conjecture. With these tools, we then show how the concept of causal structure and the ER=EPR conjecture allow us to resolve the conflict between Humeanism and entanglement.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • On the notions of indiscernibility and indeterminacy in the light of the Galois–Grothendieck theory.Gabriel Catren & Julien Page - 2014 - Synthese 191 (18):4377-4408.
    We analyze the notions of indiscernibility and indeterminacy in the light of the Galois theory of field extensions and the generalization to \(K\) -algebras proposed by Grothendieck. Grothendieck’s reformulation of Galois theory permits to recast the Galois correspondence between symmetry groups and invariants as a Galois–Grothendieck duality between \(G\) -spaces and the minimal observable algebras that discern (or separate) their points. According to the natural epistemic interpretation of the original Galois theory, the possible \(K\) -indiscernibilities between the roots of a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Conventionality of Parastatistics.David John Baker, Hans Halvorson & Noel Swanson - 2015 - British Journal for the Philosophy of Science 66 (4):929-976.
    Nature seems to be such that we can describe it accurately with quantum theories of bosons and fermions alone, without resort to parastatistics. This has been seen as a deep mystery: paraparticles make perfect physical sense, so why don’t we see them in nature? We consider one potential answer: every paraparticle theory is physically equivalent to some theory of bosons or fermions, making the absence of paraparticles in our theories a matter of convention rather than a mysterious empirical discovery. We (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Identity, Superselection Theory, and the Statistical Properties of Quantum Fields.David John Baker - 2013 - Philosophy of Science 80 (2):262-285.
    The permutation symmetry of quantum mechanics is widely thought to imply a sort of metaphysical underdetermination about the identity of particles. Despite claims to the contrary, this implication does not hold in the more fundamental quantum field theory, where an ontology of particles is not generally available. Although permutations are often defined as acting on particles, a more general account of permutation symmetry can be formulated using superselection theory. As a result, permutation symmetry applies even in field theories with no (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Against Field Interpretations of Quantum Field Theory.David John Baker - 2009 - British Journal for the Philosophy of Science 60 (3):585-609.
    I examine some problems standing in the way of a successful `field interpretation' of quantum field theory. The most popular extant proposal depends on the Hilbert space of `wavefunctionals.' But since wavefunctional space is unitarily equivalent to many-particle Fock space, two of the most powerful arguments against particle interpretations also undermine this form of field interpretation. IntroductionField Interpretations and Field OperatorsThe Wavefunctional InterpretationFields and Inequivalent Representations 4.1. The Rindler representation 4.2. Spontaneous symmetry breaking 4.3. Coherent representations The Fate of Fields (...)
    Direct download (13 more)  
     
    Export citation  
     
    Bookmark   61 citations  
  • Antimatter.David John Baker & Hans Halvorson - 2010 - British Journal for the Philosophy of Science 61 (1):93-121.
    The nature of antimatter is examined in the context of algebraic quantum field theory. It is shown that the notion of antimatter is more general than that of antiparticles. Properly speaking, then, antimatter is not matter made up of antiparticles—rather, antiparticles are particles made up of antimatter. We go on to discuss whether the notion of antimatter is itself completely general in quantum field theory. Does the matter–antimatter distinction apply to all field theoretic systems? The answer depends on which of (...)
    Direct download (14 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  • Holism and nonseparability by analogy.Aristidis Arageorgis - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (3):206-214.
    This paper explores the issues of holism and nonseparability in relativistic quantum field theory by focusing on an analog of the typical model featuring in many discussions of holism and nonseparability in nonrelativistic quantum mechanics. It is argued that the quantum field theoretic model does exhibit holism in a metaphysical sense and that there are plausible grounds to view QFT holistic in an epistemological sense. However, the complexities arising from the fact that quantum fields have infinite degrees of freedom prohibit (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Objectivity Sans Intelligibility. Hermann Weyl's Symbolic Constructivism.Iulian D. Toader - 2011 - Dissertation, University of Notre Dame
    A new form of skepticism is described, which holds that objectivity and understanding are incompossible ideals of modern science. This is attributed to Weyl, hence its name: Weylean skepticism. Two general defeat strategies are then proposed, one of which is rejected.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Pluralists about Pluralism? Versions of Explanatory Pluralism in Psychiatry.Jeroen Van Bouwel - 2014 - In M. C. Galavotti, D. Dieks, W. J. Gonzalez, S. Hartmann, Th Uebel & M. Weber (eds.), New Directions in Philosophy of Science (The Philosophy of Science in a European Perspective Series). Springer. pp. 105-119.
    In this contribution, I comment on Raffaella Campaner’s defense of explanatory pluralism in psychiatry (in this volume). In her paper, Campaner focuses primarily on explanatory pluralism in contrast to explanatory reductionism. Furthermore, she distinguishes between pluralists who consider pluralism to be a temporary state on the one hand and pluralists who consider it to be a persisting state on the other hand. I suggest that it would be helpful to distinguish more than those two versions of pluralism – different understandings (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Effective Field Theories: A Philosophical Appraisal.Dimitrios Athanasiou - unknown
    The word “effective” has become the standard label attached to scientific theories these days. An effective theory allows us to make accurate predictions about a physical system at a certain (energy, length) scale while being largely ignorant of the details at more fundamental levels. One does not need to know anything about the deeper, quantum structure of water molecules to describe the macroscopic behaviour of waves or water in a glass. Although effective descriptions so broadly construed have been part of (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • A Quantum-Theoretic Argument Against Naturalism.Bruce L. Gordon - 2011 - In Bruce L. Gordon & William A. Dembski (eds.), The Nature of Nature: Examining the Role of Naturalism in Science. Wilmington, DE: ISI Books. pp. 179-214.
    Quantum theory offers mathematical descriptions of measurable phenomena with great facility and accuracy, but it provides absolutely no understanding of why any particular quantum outcome is observed. It is the province of genuine explanations to tell us how things actually work—that is, why such descriptions hold and why such predictions are true. Quantum theory is long on the what, both mathematically and observationally, but almost completely silent on the how and the why. What is even more interesting is that, in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Spontaneous Symmetry Breaking in Finite Quantum Systems: a decoherent-histories approach.David Wallace - unknown
    Spontaneous symmetry breaking in quantum systems, such as ferromagnets, is normally described as degeneracy of the ground state; however, it is well established that this degeneracy only occurs in spatially infinite systems, and even better established that ferromagnets are not spatially infinite. I review this well-known paradox, and consider a popular solution where the symmetry is explicitly broken by some external field which goes to zero in the infinite-volume limit; although this is formally satisfactory, I argue that it must be (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • On modifications of Reichenbach's principle of common cause in light of Bell's theorem.Eric G. Cavalcanti & Raymond Lal - 2014 - Journal of Physics A: Mathematical and Theoretical 47 (42):424018.
    Bellʼs 1964 theorem causes a severe problem for the notion that correlations require explanation, encapsulated in Reichenbachʼs principle of common cause. Despite being a hallmark of scientific thought, dropping the principle has been widely regarded as much less bitter medicine than the perceived alternative—dropping relativistic causality. Recently, however, some authors have proposed that modified forms of Reichenbachʼs principle could be maintained even with relativistic causality. Here we break down Reichenbachʼs principle into two independent assumptions—the principle of common cause proper and (...)
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Between classical and quantum.Nicolaas P. Landsman - 2007 - Handbook of the Philosophy of Science 2:417--553.
    The relationship between classical and quantum theory is of central importance to the philosophy of physics, and any interpretation of quantum mechanics has to clarify it. Our discussion of this relationship is partly historical and conceptual, but mostly technical and mathematically rigorous, including over 500 references. For example, we sketch how certain intuitive ideas of the founders of quantum theory have fared in the light of current mathematical knowledge. One such idea that has certainly stood the test of time is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   75 citations  
  • On the notion of indiscernibility in the light of Galois-Grothendieck Theory.Gabriel Catren & Julien Page - unknown
    We analyze the notion of indiscernibility in the light of the Galois theory of field extensions and the generalization to K-algebras proposed by Grothendieck. Grothendieck's reformulation of Galois theory permits to recast the Galois correspondence between symmetry groups and invariants as a duality between G-spaces and the minimal observable algebras that separate theirs points. In order to address the Galoisian notion of indiscernibility, we propose what we call an epistemic reading of the Galois-Grothendieck theory. According to this viewpoint, the Galoisian (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Chronogeometrical Determinism and the Local Present.Steven Savitt - unknown
    Hilary Putnam argued that the special theory of relativity shows that there can be no temporal becoming. Howard Stein replied by defining a becoming relation in Minkowski spacetime. Clifton and Hogarth extended and sharpened Stein’s results. Game over? To the contrary, it has been argued that the Stein-Clifton-Hogarth theorems actually support Putnam’s contention, in that if an apparently minimal condition is put on the becoming relation, then these theorems entail that the becoming relation must be the universal relation. I recount (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Status of Scaling Limits as Approximations in Quantum Theories.Benjamin Feintzeig - unknown
    This paper attempts to make sense of a notion of ``approximation on certain scales'' in physical theories. I use this notion to understand the classical limit of ordinary quantum mechanics as a kind of scaling limit, showing that the mathematical tools of strict quantization allow one to make the notion of approximation precise. I then compare this example with the scaling limits involved in renormalization procedures for effective field theories. I argue that one does not yet have the mathematical tools (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • What can categories tell us about space-time?Ko Sanders - unknown
    It is widely believed that in quantum theories of gravity, the classical description of space-time as a manifold is no longer viable as a fundamental concept. Instead, space-time emerges as an approximation in appropriate regimes. In order to understand what is required to explain this emergence, it is necessary to have a good understanding of the classical structure of space-time. In this essay I will focus on the concept of space-time as it appears in locally covariant quantum field theory, an (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark